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BV ESTIMATES OF LAX-FRIEDRICHS’ SCHEME
FOR A CLASS OF NONLINEAR

HYPERBOLIC CONSERVATION LAWS

TONG YANG, HUIJIANG ZHAO, AND CHANGJIANG ZHU

(Communicated by Suncica Canic)

Abstract. We give uniform BV estimates and L1-stability of Lax-Friedrichs’
scheme for a class of n × n systems of strictly hyperbolic conservation laws
whose integral curves of the eigenvector fields are straight lines, i.e., Temple
class, under the assumption of small total variation. This implies that the
approximate solutions generated via the Lax-Friedrichs’ scheme converge to
the solution given by the method of vanishing viscosity or the Godunov scheme,
and then the Glimm scheme or the wave front tracking method.

1. Introduction

Consider the one dimensional Cauchy problem for a system of nonlinear hyper-
bolic conservation laws

(1.1) ut + f(u)x = 0, x ∈ R, t > 0,

with initial data

(1.2) u(x, 0) = u0(x), x ∈ R.

Here f(u) is a smooth map from a domain Ω ⊂ Rn into Rn.
The study of the Cauchy problem (1.1), (1.2), especially the well-posedness the-

ory of the entropy solutions, has been one of the most important problems. This
problem for a scalar conservation law was solved perfectly in the 1960’s [3], [9],
[12], [13] mainly because of the maximum principle. Progress on systems of con-
servation laws was made only recently. First, A. Bressan [3], [6] and his group,
T.-P. Liu and T. Yang [6], [11] obtained the L1−stability of the entropy solution to
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systems of hyperbolic conservation laws obtained via the Glimm scheme [8] or wave
front tracking method [3] when each characteristic field is either genuinely nonlin-
ear or linearly degenerate. Second, S. Bianchini and A. Bressan [1] established the
uniform BV estimates to general strictly hyperbolic systems with artificial viscos-
ity and consequently showed that the solution obtained via the vanishing viscosity
method coincides with those obtained via the Glimm scheme or wave front tracking
method.

It is well-known that most of the numerical schemes contain numerical viscosities.
When the grid size tends to zero, the numerical viscosity tends to zero. This is a
discrete version of the vanishing viscosity problem which is more difficult than the
continuous version because the general existence result on discrete travelling wave
solutions is not known. Also, the decomposition of the solutions at each point
into travelling wave solutions is the main new idea in the recent approach in [1]
for the continuous version of vanishing viscosity. Therefore, the well-posedness
theory for numerical scheme is largely open. As a recent result in this direction, A.
Bressan and H. K. Jenssen [4] gave the uniform BV estimates on the approximate
solutions generated by the Godunov scheme for a class of systems of hyperbolic
conservation laws whose integral curves of the eigenvector fields are straight lines,
i.e., Temple class. The main result in this paper is to give uniform BV estimates
on Lax-Friedrichs’ scheme for the same class of systems as in [4].

Based on the theory of compensated compactness [13], R. J. DiPerna [7] proved
the convergence of Lax-Friedrichs’ scheme for 2× 2 systems of strictly hyperbolic,
genuinely nonlinear conservation laws provided that the a priori L∞ estimate on the
approximate solutions can be obtained. However, the regularity of these solutions
is not enough to obtain the well-posedness of the solutions. On the other hand,
a uniform BV estimate of the approximate solutions generated by Lax-Friedrichs’
scheme is sufficient to deduce the desired well-posedness result. In the previous
work, the BV estimates on the approximate solutions constructed by Lax-Friedrichs’
scheme was only proved for scalar equations [9], [12]. To our knowledge, even under
the assumption of small total variation of the initial data, the corresponding result
for the system is not known.

As a first step toward the understanding of the uniform BV estimates of Lax-
Friedrichs’ scheme for nonlinear systems of hyperbolic conservation laws, we show
in this paper that, under the same straight line assumption on wave curves as in [2]
and [4], the approximate solutions constructed by Lax-Friedrichs’ scheme converge
to the same solution as obtained by vanishing viscosity [2] or by the Godunov
scheme [4], and then the Glimm scheme [8] or the wave front tracking method [3].

To state our main result precisely, we first list the assumptions as follows. Let
Df(u), the Jacobian matrix of f(u), have n real and distinct eigenvalues λk(u), k =
1, 2, · · · , n, u ∈ Ω. By possibly restricting to a smaller domain Ω and by performing
the linear change of independent coordinates

t′ = 2λ̄t, x′ = x+ λ̄t,

where λ̄ = max
u∈Ω,1≤i≤n

|λk(u)|, we can assume that there are constants λ̄0 = 0 <

λ̄1 < · · · < λ̄n−1 < λ̄n = 1 such that

(1.3) λ̄i−1 < λi(u) < λ̄i, u ∈ Ω, i = 1, 2, · · · , n.
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The corresponding right and left eigenvectors are denoted by rk(u), lk(u), respec-
tively, and normalized so that |rk(u)| ≡ 1, ri(u) · lj(u) = δij . Here δij is the
Kronecker symbol.

The basic assumption throughout the paper is that the integral curves of the
eigenvector fields are straight lines, i.e.,

(1.4)
(
Drk(u)

)
· rk(u) = 0, u ∈ Ω, k = 1, 2, · · · , n,

where Drk(u) denotes the Jacobian matrix of rk(u). (1.4) implies that the shock
curves and the rarefaction curves coincide and are straight lines in Ω; see [14].

By assumption (1.3), the Courant-Friedrichs-Lewy condition is satisfied with
equal time and space step ∆x = ∆t. Thus, without loss of generality, we assume
∆x = ∆t in the following discussion for simplicity. Denote the value of the ap-
proximate solution in the i − th cell

[
(i− 1

2 )∆x, (i + 1
2 )∆x

)
at time j∆t by uji .

Lax-Friedrichs’ scheme is given inductively as follows (cf. [9]): At time t = 0, let
u0
i denote the average over the i− th cell of the initial data u0(x),

u0
i =

1
∆x

∫ (i+ 1
2 )∆x

(i− 1
2 )∆x

u0(ξ)dξ.

Given the values uji−1 and uji+1 in the (i − 1) − th and (i + 1) − th cells, at time
j∆t, j ≥ 0, uj+1

i in the i− th cell at time (j + 1)∆t is given by

(1.5) uj+1
i =

1
2

(
uji+1 + uji−1

)
− 1

2

(
f(uji+1)− f(uji−1)

)
.

It is easy to see that for each ∆x, the scheme gives an approximate solution u∆x

of (1.1) and (1.2) for all (x, t) ∈ R×R+ provided that the values uji remain in Ω.
For each fixed time step j∆t, we use u(j) to denote the discrete function: i →

uji , i ∈ Z. The total variation of u(j) is then given by

T.V.[u(j)] =
∑
i∈Z

∣∣∣uji − uji−1

∣∣∣ .
Based on the above notations, our main result can be stated in the following.

Theorem 1.1. Suppose that (1.1) is strictly hyperbolic for each u ∈ Ω and the
normalized eigenvectors satisfy (1.4). Then there exist constants δ0 > 0, δ1 > 0
such that the following holds. For each initial data u0(x) with

(1.6) T.V.[u0(x)] < δ0,

the corresponding solution uji of Lax-Friedrichs’ scheme (1.5) is well defined for all
time steps j ∈ Z+ and satisfies

(1.7) T.V.[u(j)] < δ1, for all j ∈ Z+.

Furthermore, there exists a constant L such that for all pairs of initial data u0(x),
v0(x) satisfying (1.6), the corresponding solutions u(j) and v(j′) satisfy

(1.8)
+∞∑
i=−∞

∣∣∣uji − vj′i ∣∣∣∆x ≤ L · (|j − j′| ·∆t+ ||u0(x)− v0(x)||L1

)
.

As a direct consequence of Theorem 1.1, we can deduce that the approximate
solutions constructed via Lax-Friedrichs’ scheme converge to the same solution as
given by the method of vanishing viscosity [2] or the Godunov scheme [4], and then
the Glimm scheme [8] or the wave front tracking method [3].
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Before concluding this section, we give the main idea in proving Theorem 1.1.
Due to the straight line assumption (1.4), the increase in total variation induced
by Lax-Friedrichs’ scheme comes only from the terms involving two different char-
acteristic families and consequently the techniques developed in [4] can be used to
control the creation of new oscillations in the approximate solutions generated by
the scheme. It is worth pointing out that the straight line assumption (1.4) plays
an essential role in our analysis and new tools are needed to study the influence of
those terms from the interaction of the same family in the general case.

2. BV estimates

Let us first give some basic properties of the Riemann problem for (1.1) under
the assumption (1.4), i.e., (1.1) with initial data

(2.1) u0(x) =

{
u−, for x < 0,

u+, for x > 0.

Given u−, u+ ∈ Ω, by strict hyperbolicity, the assumption (1.4), and the Implicit
Function Theorem there exist unique intermediate states w0 = u−, w1, · · · , wn =
u+ and wave strength σk such that
(2.2)
wk = Rk

(
σk
) (
wk−1

)
= wk−1+σkrk

(
wk−1

)
, rk
(
wk−1

)
= rk

(
wk
)
, k = 1, 2, · · · , n,

provided that Ω is a small neighborhood of u−.
It is easy to verify that the solution u(x, t) of the Riemann problem (1.1) and

(2.1) is given by

(2.3) u(x, t) =


u−, for x

t < 0,

R(u−, u+)(xt ), for x
t ∈ [0, 1],

u+, for x
t > 1.

Here

(2.4) R(u−, u+)(ξ) = Rk
(
zk(ξ, 1)

)
(wk−1) for ξ ∈

[
λ̄k−1, λ̄k

]
, k = 1, 2, · · · , n,

and zk(x, t) is the unique (self similar) entropy solution to the scalar Riemann
problem

(2.5) zt + F k(z)x = 0, z(x, 0) =

{
0, for x < 0,

σk, for x > 0,

with F k(σ) =
∫ σ

0

λk
(
Rk(s)(wk−1)

)
ds.

In order to obtain a uniform BV estimate on the approximate solutions, we need
to estimate the summation of wave strengths for all adjacent discontinuities at time
t = j∆t, j ∈ Z+. This requires the relation between the wave strengths at time
t = (j + 1)∆t and those at time t = j∆t. For the Godunov scheme, such a relation
is easier to obtain because the definition of the Godunov scheme comes from the
averaging of two Riemann solutions. For Lax-Friedrichs’ scheme considered in this
paper, we will first introduce an auxiliary state ūj+1

i similar to that of the Godunov
scheme and then rewrite the expression (1.5) in terms of ūji . Then, the relation is
obtained by using the assumption (1.4) as explained in the following.
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Set

(2.6) ūj+1
i = uji −

(
f(uji )− f(uji−1)

)
.

We have by integrating (1.1) over the rectangle[
(i− 1

2
)∆x, (i +

1
2

)∆x
]
× [j∆t, (j + 1)∆t]

that

(2.7) ūj+1
i =

∫ 1

0

R
(
uji−1, u

j
i

)
(ξ)dξ.

It is easy to see that if uji−1 is connected to uji by a single k − th wave of strength
σji−1,k, then

(2.8) ūj+1
i = uji−1 +

(
1− λk(uji−1, u

j
i )
)
σji−1,kr

k(uji−1), rk(uji−1) = rk(uji ).

Here

λk(uji−1, u
j
i ) =

∫ 1

0

λk
(
uji−1 + sσji−1,kr

k(uji−1)
)
ds.

From (1.5) and (2.6), we can deduce that

(2.9) uj+1
i =

1
2

(
ūj+1
i + ūj+1

i+1

)
− 1

2

(
uji − u

j
i−1

)
.

We now consider the variation between two grid points at time (j+1)∆t by relating
it to the variation of four grid points at the time j∆t. Given four consecutive states
uji−1, uji , u

j
i+1 and uji+2, let uj+1

i and uj+1
i+1 be the two resulting states given by Lax-

Friedrichs’ scheme (1.5). From (2.9), we have

(2.10) uj+1
i+1 =

1
2

(
ūj+1
i+1 + ūj+1

i+2

)
− 1

2

(
uji+1 − u

j
i

)
.

The strengths of the k-waves, k = 1, 2, · · · , n, in the four Riemann problems
(uji−1, u

j
i ), (uji , u

j
i+1), (uji+1, u

j
i+2) and (uj+1

i , uj+1
i+1 ) are denoted by σji−1,k, σji,k,

σji+1,k and σj+1
i,k , respectively. The intermediate states in the first three Riemann

problems are denoted by wj,0i−1 = uji−1, w
j,1
i−1, · · · , w

j,n−1
i−1 , wj,ni−1 = uji = wj,0i , wj,1i , · · ·,

wj,n−1
i , wj,ni = uji+1 = wj,0i+1, w

j,1
i+1, · · · , w

j,n−1
i+1 , and wj,ni+1 = uji+2, respectively. Now

we define the map which measures the change in the amount of waves in the k− th
family produced by Lax-Friedrichs’ scheme from t = j∆t to t = (j + 1)∆t:

(2.11)
Ψk(σji−1;σji ;σ

j
i+1) = σj+1

i,k − 1
2

(
1 + λk(wj,k−1

i−1 , wj,ki−1)
)
σji−1,k

− 1
2

(
1− λk(wj,k−1

i+1 , wj,ki+1)
)
σji+1,k,

where σjl = (σjl,1, · · · , σ
j
l,n), l = i− 1, i, i+ 1.

Under the assumption (1.4), we have the following main lemma in this paper.

Lemma 2.1. Under the assumption (1.4), there exist smooth functions Akp,q, B
k
p,q,

Ckp,q, Dk
p,q, Ekp,q and F kp,q, depending on σji−1, σji and σji+1, such that

(2.12)
Ψk(σji−1;σji ;σ

j
i+1) =

∑
1≤p6=q≤n

(
Akp,qσ

j
i−1,pσ

j
i−1,q+Bkp,qσ

j
i−1,pσ

j
i,q+Ckp,qσ

j
i−1,pσ

j
i+1,q

+Dk
p,qσ

j
i,pσ

j
i,q + Ekp,qσ

j
i,pσ

j
i+1,q + F kp,qσ

j
i+1,pσ

j
i+1,q

)
.
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Proof. From the standard interpolation technique and a first order Taylor expansion
(cf. [4]), to prove (2.12) we only need to show that Ψk(σji−1;σji ;σ

j
i+1) satisfies

(2.13)
Ψk
(

0, · · · , 0, σji−1,k, 0, · · · , 0; 0, · · · , 0, σji,k, 0, · · · , 0; 0, · · · , 0, σji+1,k, 0, · · · , 0
)
≡ 0.

In fact, σjs,l = σjs,kδk,l (s = i− 1, i, i+ 1) implies that

(2.14)


uji = uji−1 + σji−1,kr

k(uji−1), rk(uji−1) = rk(uji ),

uji+1 = uji + σji,kr
k(uji ), rk(uji+1) = rk(uji ),

uji+2 = uji+1 + σji+1,kr
k(uji+1), rk(uji+2) = rk(uji+1) = rk(uji ).

Furthermore, from (2.8) and (2.14) we deduce that

(2.15)


ūj+1
i = uji−1 +

(
1− λk(uji−1, u

j
i )
)
σji−1,kr

k(uji−1),

ūj+1
i+2 = uji+1 +

(
1− λk(uji+1, u

j
i+2)

)
σji+1,kr

k(uji+1).

Consequently, from (2.9), (2.15), and (2.14)1, we have
uj+1
i+1 − u

j+1
i =

1
2

{
(ūj+1
i+1 +ūj+1

i+2 )−(uji+1 − u
j
i )
}
− 1

2

{
(ūj+1
i +ūj+1

i+1 )−(uji − u
j
i−1)

}
=

1
2

(
ūj+1
i+2 − ū

j+1
i

)
− 1

2

(
uji+1 − 2uji + uji−1

)
=

1
2

{
uji+1 +

(
1− λk(uji+1, u

j
i+2)

)
σji+1,kr

k(uji+1)
}

−1
2

{
uji−1 +

(
1− λk(uji−1, u

j
i )
)
σji−1,kr

k(uji−1)
}

−1
2

(
uji+1 − 2uji + uji−1

)
=

1
2

(
1− λk(uji+1, u

j
i+2)

)
σji+1,kr

k(uji+1)

−1
2

(
1− λk(uji−1, u

j
i )
)
σji−1,kr

k(uji−1) + (uji − u
j
i−1)

=
1
2

{(
1−λk(uji+1, u

j
i+2)

)
σji+1,k+

(
1+λk(uji−1, u

j
i )
)
σji−1,k

}
rk(uji−1),

which implies that the Riemann problem (uj+1
i+1 , u

j+1
i ) is solved by a single wave of

family k and with strength 1
2

(
1−λk(uji+1, u

j
i+2)
)
σji+1,k+ 1

2

(
1+λk(uji−1, u

j
i )
)
σji−1,k.

This shows that

σj+1
i,k =

1
2

(
1− λk(uji+1, u

j
i+2)

)
σji+1,k +

1
2

(
1 + λk(uji−1, u

j
i )
)
σji−1,k.

This is (2.13) and completes the proof of Lemma 2.1.

From Lemma 2.1, we know that the strengths σji (i ∈ Z, j ≥ 1) satisfy the
following systems of equations: For k = 1, 2, · · · , n
(2.16)

σj+1
i,k =

1
2

{(
1− λk(wj,k−1

i+1 , wj,ki+1)
)
σji+1,k +

(
1 + λk(wj,k−1

i−1 , wj,ki−1)
)
σji−1,k

}
+Qji,k.
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Here the quadratic coupling terms are given by

(2.17)
Qji,k =

∑
1≤p6=q≤n

(
Akp,qσ

j
i−1,pσ

j
i−1,q +Bkp,qσ

j
i−1,pσ

j
i,q + Ckp,qσ

j
i−1,pσ

j
i+1,q

+Dk
p,qσ

j
i,pσ

j
i,q + Ekp,qσ

j
i,pσ

j
i+1,q + F kp,qσ

j
i+1,pσ

j
i+1,q

)
,

from which we can see that the increase in total variation induced by Lax-Friedrichs’
scheme comes only from terms involving two different characteristic families.

To control the increase of total variation induced by Qji,k, as in [4], the properties
of solutions ρji,k to the following linear homogeneous difference equation

(2.18) ρj+1
i,k =

1
2

(
1 + λk(wj,k−1

i−1 , wj,ki−1)
)
ρji−1,k +

1
2

(
1− λk(wj,k−1

i+1 , wj,ki+1)
)
ρji+1,k

plays an essential role.
It is easy to see that the solutions ρji,k to the difference equation (2.18) satisfy
(i) Nonnegative Perserving: if ρjl,k ≥ 0 for any l ∈ Z, j ≥ 0, then ρj+1

i,k ≥ 0 for
any i ∈ Z.

(ii) Conservation:
∞∑

i=−∞
ρj+1
i,k =

∞∑
i=−∞

ρji,k.

(iii) L1-contraction:
∞∑

i=−∞
|ρj+1
i,k | ≤

∞∑
i=−∞

|ρji,k|.

For the interaction between two different families, the following lemma is proved
in [4]:

Lemma 2.2. Assume that 1 ≤ p < q ≤ n and that (1.3) holds. Let ρji,p and ρji,q
denote the solutions of (2.18) with initial data ρ0

i,p and ρ0
i,q, respectively. Then for

fixed m̄ ∈ Z, we have the estimate

(2.19)
j∑

m=0

∞∑
i=−∞

|ρmi+m̄,p||ρmi,q| ≤ C(p, q)

( ∞∑
i=−∞

|ρ0
i,p|
)( ∞∑

i=−∞
|ρ0
i,q|
)
,

where C(p, q) satisfies

(2.20) C(p, q) ≤ max
u,v∈Ω

{
2

λq(u)− λp(v)

}
.

Based on Lemma 2.1 and Lemma 2.2, the total variation norm of the approximate
solutions by Lax-Friedrichs’ scheme can be estimated as the one for the Godunov
scheme in [4]. For convenience of the reader, we give the estimations as follows; cf.
[4].

We start by assuming that Lax-Friedrichs’ scheme is well defined up to the time
step j and we let C0 be a constant that dominates the absolute values of all Akp,q,
Bkp,q, C

k
p,q, D

k
p,q, E

k
p,q and F kp,q.

Let

(2.21) V k(j) =
∞∑

i=−∞
|σji,k|, k = 1, 2, · · · , n;

we have from (2.16) that

(2.22) V k(j + 1) ≤ V k(j) +
∞∑

i=−∞
|Qji,k| ≤ V

k(0) +
j∑

m=0

∞∑
i=−∞

|Qmi,k|.
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Denote

(2.23) Qk(j) =
j∑

m=0

∞∑
i=−∞

|Qmi,k|;

we have from (2.17) that

(2.24)

Qk(j) ≤ C0

∑
p6=q

j∑
m=0

∞∑
i=−∞

(
|σmi−1,p||σmi−1,q|+ |σmi−1,p||σmi,q|+ |σmi−1,p||σmi+1,q|

+|σmi,p||σmi,q|+ |σmi,p||σmi+1,q|+ |σmi+1,p||σmi+1,q|
)

≤ 3C0

∑
p6=q

2∑
m̄=0

j∑
m=0

∞∑
i=−∞

|σmi+m̄,p||σmi,q|

= : 3C0

∑
p6=q

2∑
m̄=0

Em̄.

Now we turn to the estimate Em̄. For this, let Γk(i, j; i′, j′) be the corresponding
Green kernel to (2.18), i.e., for j ≥ j′, Γk(i, j; i′, j′) = ρji,k is the solution of (2.18)
at the node (i, j), with initial data

ρj
′

i′,k = δj
′

i′ (i) =

{
1, if i = i′,

0, otherwise.

By Duhamel’s principle we can write the solution of the linear inhomogeneous
system (2.16) as

(2.25)
σji,k =

∞∑
l=−∞

Γk(i, j; l, 0)σ0
l,k +

j−1∑
r=0

∞∑
l=−∞

Γk(i, j; l, r)Qrl,k

= αji,k + βji,k.

Consequently
(2.26)

Em̄ ≤
j∑

m=0

∞∑
i=−∞

(
|αmi+m̄,p||βmi,q|+ |αmi+m̄,p||αmi,q|+ |βmi+m̄,p||αmi,q |+ |βmi+m̄,p||βmi,q|

)
= : S1

m̄ + S2
m̄ + S3

m̄ + S4
m̄.

Slm̄ (l = 1, 2, 3, 4) can be estimated by the following:
(2.27)

S4
m̄ =

j∑
m=0

∞∑
i=−∞

∣∣∣∣∣
m−1∑
r=0

∞∑
l=−∞

Γp(i + m̄, j; l, r)Qrl,p

∣∣∣∣∣
∣∣∣∣∣
m−1∑
s=0

∞∑
h=−∞

Γq(i,m;h, s)Qsh,p

∣∣∣∣∣
≤

j∑
m=0

∞∑
i=−∞

(
m−1∑
r=0

∞∑
l=−∞

Γp(i + m̄, j; l, r)
∣∣Qrl,p∣∣

)(
m−1∑
s=0

∞∑
h=−∞

Γq(i,m;h, s)
∣∣Qsh,q∣∣

)

≤
j−1∑
r=0

∞∑
l=−∞

|Qrl,p|
j−1∑
s=0

∞∑
h=−∞

|Qsh,q|
(

j∑
m=0

∞∑
i=−∞

Γp(i+ m̄,m; l, r)Γq(i,m;h, s)

)
.
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We now have to estimate the term
j∑

m=0

∞∑
i=−∞

Γp(i+m̄,m; l, r)Γq(i,m;h, s). For this,

without loss of generality, we assume s ≥ r and in this case Γp(i+ m̄,m; l, r) is the
solution of (2.18) (with k = p) at the time step m and with data Γp(i + m̄, s; l, r)
at the time step s, Γq(i,m;h, s) is the solution of (2.18) (with k = q) at the time
step m and with data δsh(i) at the time step s. Thus from Lemma 2.2, we have

(2.28)

j∑
m=0

∞∑
i=−∞

Γp(i+ m̄,m; l, r)Γq(i,m;h, s)

≤ C(p, q)

( ∞∑
i=−∞

Γp(i+ m̄, s; l, r)

)( ∞∑
i=−∞

δsh(i)

)

= C(p, q)
∞∑

i=−∞
Γp(i+ m̄, s; l, r) = C(p, q).

Here we have used the conservation property of solutions to the linear homogeneous
difference equation (2.18).

Substituting (2.28) into (2.27) yields
(2.29)

S4
m̄ ≤ C(p, q)

(
j−1∑
r=0

∞∑
l=−∞

|Qrl,p|
)(

j−1∑
s=0

∞∑
h=−∞

|Qsh,q|
)
≤ C(p, q)Qp(j − 1)Qq(j − 1).

Similarly, by the L1-contractive property of solutions to (2.18) and Lemma 2.2, we
have

(2.30) S1
m̄ ≤ C(p, q)V p(0)V q(0),

(2.31) S2
m̄ ≤ C(p, q)V p(0)Qq(j − 1),

and

(2.32) S3
m̄ ≤ C(p, q)V q(0)Qp(j − 1).

Putting (2.29)-(2.32) into (2.26), we have

(2.33) Em̄ ≤ C(p, q) (V p(0) +Qp(j − 1)) (V q(0) +Qq(j − 1)) .

Thus

(2.34)
Qk(j) ≤ 3C0

∑
p6=q

2∑
m̄=0

C(p, q) (V p(0) +Qp(j − 1)) (V q(0) +Qq(j − 1))

≤ C1

∑
p6=q

(V p(0) +Qp(j − 1)) (V q(0) +Qq(j − 1)) .

Here

C1 = 9C0 max
1≤p6=q≤n, u,v∈Ω

{
2

|λq(u)− λp(v)|

}
.

Set

(2.35) V (j) =
n∑
k=1

V k(j), Q(j) =
n∑
k=1

Qk(j).
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Then, we have from (2.22), (2.34) and (2.35) that

(2.36) V (j) ≤ V (0) +Q(j − 1),

(2.37) Q(j) ≤ C2(V (0) +Q(j − 1))2,

where C2 = 2nC1.
It follows from (2.36) and (2.37) that, if the total amount of waves V (0) in the

initial data is sufficiently small, then Q(j), and hence also the total amount of
waves V (j) remains small for all time steps. Thus (1.7) holds for all j ∈ Z+ and uji
remains in Ω for all i ∈ Z, j ≥ 0 which means that the scheme is well defined for
all i ∈ Z, j ∈ Z+. Based on these uniform BV estimates, the L1−stability result
(1.8) follows from the previous works; cf. [3, 4, 5, 6, 11]. This completes the proof
of Theorem 1.1.
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