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TRACE SPLITTINGS IN C∗-ALGEBRAS
OF TILING SYSTEMS VIA COLOURINGS

A. EL KACIMI ALAOUI AND R. PARTHASARATHY

(Communicated by David R. Larson)

Abstract. Tiles of a hierarchical tiling system are coloured with given colours.
The resulting system implements colour symmetries and prescribed frequen-
cies and is itself a hierarchical system whose prototile types admit an elegant
description. The frequencies of occurrence of colours is interpreted using the
unique trace on the C∗-algebra of the given tiling system and the trace on the
C∗-algebra of the coloured tiling system.

1. Introduction and preliminaries

In [EP] we obtained results demonstrating how one may colour the tiles of a
hierarchical tiling (dynamical) system so that the resulting system is repetitive
(i.e., has local isomorphism property) and has prescribed colour symmetries and
also prescribed frequencies of colour occurrence. In this article, we show that the
colouring obtained in [EP] is itself described by a hierarchical (coloured) tiling
system. Then we describe the unique trace of the associated C∗-algebras and
exhibit the colour frequencies using the trace. The precise statement of the result
is found in Theorem 2.11. It says that projections in the C∗-algebra of the initial
tiling system can be split into an orthogonal sum of projections in the C∗-algebra
of the coloured tiling system respecting colour symmetries and such that when the
trace is evaluated on both sides of the above splitting one finds decomposition in
the desired frequency ratio. Furthermore, this can be done while preserving the
partial order structure among self-adjoint elements.

A lot of simplification arises in the understanding of hierarchical tiling systems,
their tiling space and the associated C∗-algebra (following [Co, II.3]), by the intro-
duction of what we call in this article ‘the relative position indexing set ’.

1.1. We may as well begin by recalling the standard features of a hierarchical
tiling system: All the tilings considered are in some Euclidean space Rd.

1.1.1. We have (T0, S0), (T1, S1), (T2, S2), . . . , (Ti, Si), . . . where Ti is a tiling of
Rd by tiles congruent to one of the prototiles from the set Si. We do not require
that two tiles which are congruent to the same prototile are translates of each other,
nor is it necessary that two tiles which are translates of each other must have the
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same prototile type. One more remark in the same vein: Possibly due to some
symmetries one may ‘visualize’ more than one congruence of a tile to the same
prototile, but only one congurence is legitimate.

1.1.2. Every prototile in Si+1 is subdivided into several subtiles each congruent
to a prototile in Si.

1.1.3. Any Ti+1-tile δi+1 is the union of the Ti-tiles contained in δi+1 and this
subdivision depends only on the prototile type of δi+1. In fact if δi+1 is congruent
to an Si+1-prototile τ , the subdivision of δi+1 is congruent to the subdivision of τ
given by (1.1.2).

1.1.4. All prototile sets Si have the same cardinality n and the elements of each of
these sets are enumerated by integers 1, 2, . . . , n. The i-th S`-prototile is obtained
from the i-th S`−1-prototile by multiplication by a positive real number ξ greater
than one (independent of i and `). (Note: Our results also apply to more general
inflation automorphisms, e.g. self-affine that have been considered in the literature.
See [So] and the references therein.)

1.1.5. ‘Multiplicity matrix’: There is an n×n matrix A with nonnegative integral
entries ai,j such that the subdivision of the j-th S`-prototile given by (1.1.2) consists
of a1,j copies congruent to the first S`−1-prototile, a2,j copies congruent to the
second S`−1-prototile, etc., and an,j copies congruent to the n-th S`−1-prototile.
Notice that the matrix A is independent of `. As we already noted, two tiles may
be translates of each other without being congruent to the same prototile. With
this in mind, to avoid possible ambiguity, one should really say that a1,j subtiles
in the subdivision of the j-th S`-prototile are ‘marked’ congruent to the first S`−1-
prototile, a2,j subtiles are ‘marked’ congruent to the second S`−1-prototile, etc.
(One can iterate on the subdivision and eventually every S`-prototile is subdivided
into smaller subtiles each congruent to a prototile in S0. We assume that for large
enough ` every S0-prototile type occurs in the subdivision of each S`-prototile.)

1.1.6. We strengthen the hypotheses about the subdivion in (1.1.5) by making
the following assumption about the relative position of the subdivided tiles inside
the ambient tile: The inflation automorphism (multiplication by ξ) carries the i-th
S`-prototile with its subdivision into the subdivison of the i-th S`+1-prototile.

It is the combination of hypotheses (1.1.3) and (1.1.6) which qualifies the tiling
structure to be called ‘hierarchical’.

1.2. Let us choose once and for all a finite set Λ of cardinality
∑n
i,j=1ai,j equipped

with two maps π1, π2 : Λ −→ {1, 2, . . . , n} such that

#{λ ∈ Λ | π1(λ) = i, π2(λ) = j} = ai,j .

In view of hypothesis (1.1.5) above we can fix once and for all a bijection between
the last-mentioned subset of Λ and the set of subtiles congruent to the i-th S0-
prototile in the subdivision of the j-th S1-prototile. Putting together all these
bijections (∀i, j) an element λ ∈ Λ points to a unique S1-prototile τ (τ is the j-th
prototile where j = π2(λ)) and in addition a unique subtile δ in the subdivision
of τ given by (1.1.2). If i = π1(λ), then this subtile δ is congruent to the i-th
S0-prototile. We say that λ is the relative position of δ inside τ . This is a bijective
correspondence between Λ and the set of all subtiles in the subdivision (1.1.2) of
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the various S1-prototiles. This set Λ will be called the ‘relative position indexing
set ’.

Example. The Penrose tiling has two prototile types 1 and 2 (cf. Figure 1). The
T1-prototile of type 1 decomposes as the union of two T0-tiles of type 1 and one of
type 2. The T1-prototile of type 2 decomposes into the union of a T0-prototile of
type 1 and one of type 2.

Then it is easy to see that the multiplicity matrix A is given by

A =
(

2 1
1 1

)
.

The cardinality of the relative position index set Λ is 5. The picture shows the
relative positions.
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Let Λ = {λ1, λ2, λ3, λ4, λ5} as shown in Figure 2. Then the two projections
π1, π2 from Λ into {1, 2} are defined as follows:

π1(λ1) = π1(λ2) = π1(λ4) = 1,
π1(λ3) = π1(λ5) = 2,
π2(λ1) = π2(λ2) = π2(λ3) = 1,
π2(λ4) = π2(λ5) = 2.

Any T0-tile δ is contained in a unique T1-tile τ . In view of (1.1.3) the subdivi-
sion of τ into subtiles depends only on the S1-prototile type of τ . Hence by the
above paragraph preceding the Example, to the relative position of δ in τ there
corresponds a unique relative position index λ ∈ Λ. More generally, any Ti-tile δ′

is contained in a unique Ti+1-tile τ ′. But by (1.1.3) and (1.1.6) via the (iterated)
inflation automorphism ξi this inclusion is congruent to the image of the inclusion
of a subtile δ in the subdivision (1.1.2) of a unique S1-prototile τ . Hence again, to
the relative position of δ′ in τ ′ there corresponds a unique relative position index
λ ∈ Λ.

1.3. Tiling space. A Ti-tile δi is contained in a unique Ti+1-tile δi+1. Thus the
choice of a T0-tile δ0 gives rise to an infinite sequence δ0, δ1, . . . . If δ′0, δ′1, . . . is
such a sequence for another choice of δ0, then in general δi = δ′i for sufficiently
large i. We then say that the sequence Ti is admissible. This need not happen in
exceptional cases. Let X be the space of all infinite sequences

X = {z = (λ1, λ2, . . . , λi, . . . ) | λi ∈ Λ, π2(λi) = π1(λi+1)}.
With the product topology, X is a compact space. The quotient of X by the

equivalence relation

“z = (λ1, λ2, . . . , λi, . . . )
is equivalent to
z′ = (λ′1, λ

′
2, . . . , λ

′
i, . . . )

if λi = λ′i for all sufficiently large i ”

is what one calls the ‘tiling space’ of the given hierarchical tiling system. The
quotient topology is not good. By [Co] one studies such ‘non-commutative spaces’
by associating a C∗-algebra to them. As already noted in [Co], for tiling spaces
such as the ones encountered in this article this C∗-algebra turns out to be the
C∗-inductive limit of a nested sequence of finite dimensional algebras Ak which we
will make explicit shortly. But a rough indication of it is as follows: For each Sk-
prototile τ consider the matrix algebra which has rows and columns parametrized by
the subtiles of τ for its (k-fold) subdivision into tiles congruent to the S0-prototiles
(cf. (1.1.5)). The product of these algebras over all the Sk-prototiles is the algebra
Ak. The inclusion of Ak in Ak+1 is given by the subdivision of Sk+1-prototiles into
copies of tiles in Sk.

Next follows the more explicit description.

1.3.1. The C∗-algebra of the tiling system. Let Xk be the set of finite sequences
Xk = {w = (λ1, λ2, . . . , λk) | λi ∈ Λ, π2(λi) = π1(λi+1)}. (Later on it will be
helpful to view Xk as the set of relative position indices for the inclusion of Ti-tiles
inside a Ti+k-tile.)
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Let Ak be the algebra of (complex-valued) scalar matrices (aw,w′)w,w′∈Xk satis-
fying aw,w′ = 0 if π2(λk) 6= π2(λ′k) where λk and λ′k are the k-th components of w
and w′. For w,w′ ∈ Xk denote by ẇ, ẇ′ ∈ Xk−1 the truncation. The inclusion of
Ak−1 into Ak is defined as follows: Let x = (av,v′)v,v′∈Xk−1 be an element of Ak−1.
Let w = (λ1, . . . , λk−1, λk), w′ = (λ′1, . . . , λ′k−1, λ

′
k) ∈ Xk. We define the image of

x to be the matrix (aw,w′)w,w′∈Xk where

aw,w′ =

{
0 if λk 6= λ′k,

aẇ,ẇ′ if λk = λ′k.

The C∗-inductive limit A = limkAk for the above-defined inclusions Ak → Ak+1 is
the C∗-algebra of the space of tilings.

It must be pointed out that in the construction of the tiling space and the
associated C∗-algebra the choice of a specific sequence of tilings Ti, i = 0, 1, 2, . . . ,
does not play a crucial role; another sequence T ∗i with the same prototiles and
subdivision data would yield the same tiling space and the same C∗-algebra since
the prototile and subdivision data determines the relative position indexing set and
the maps π1, π2.

From now on, we will talk of a ‘hierarchical tiling system’ by simply specifying the
set of prototile types (inclusive of the inflation rule), the relative position indexing
set Λ and the maps π1 and π2.

1.4. The following operation produces a new tiling system from the given (Ti, Si),
i = 0, 1, 2, . . . , but evidently does not change the associated C∗-algebra. For any
positive integer k, we consider the sequence of tilings (Ti, Si), i = 0, k, 2k, . . . ,
ik, . . . . The multiplicity matrix A is replaced by Ak; the relative position index set
Λ is replaced by Xk.

Yet another way of producing a new tiling system from a given one is to fix
a relative position index λ0 and then to declare all tiles in relative position λ0

as belonging to a new prototile type. This increases by one the cardinality of
the prototile set. If Λ′ denotes the new relative position indexing set and π′1, π

′
2:

Λ′ −→ {1, 2, . . . , n+ 1} denote the analogues of π1 and π2, then there are maps

Φ : Λ′ −→ Λ,
φ : {1, 2, . . . , n+ 1} −→ {1, 2, . . . , n},

which are compatible with π′1, π
′
2 and π1, π2. Here, φ(n+ 1) = π1(λ0) and φ(i) = i

otherwise. Furthermore, Φ is a bijection from π′2
−1{1, 2, . . . , n} onto Λ and Φ is also

a bijection from π′2
−1(n+ 1) onto π2

−1(π1(λ0)). If X ′k denotes the analogue of Xk

the map Φ induces maps from X ′k to Xk. This gives rise to embeddings of Ak into
A′k and A into A′. Recall that Ak (resp. A′k) is a product of full matrix algebras
indexed by {1, 2, . . . , n} (resp. {1, 2, . . . , n + 1}). Under the above imbedding a
minimal idempotent of Ak in the matrix algebra indexed by π1(λ0) is split into a
sum of two minimal idempotents in A′k belonging to the matrix algebras indexed
by π1(λ0) and n+ 1.

The above construction introduces a new prototile type. But the new prototile
type occurs less often: We just mention without proof a fact relating these frequen-
cies. Let µ be the maximal eigenvalue of the multiplicity matrix A and suppose
the prototile types 1, 2, . . . , n occur in the original tiling in the ratio x1, x2, . . . , xn
and that the prototile types 1, 2, . . . , n, n + 1 occur in the new tiling in the ratio
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x′1, x
′
2, . . . , x

′
n, x
′
n+1. Then x′i = xi, if i is different from both π1(λ0) and n + 1,

whereas x′n+1 = µ−1xπ2(λ0) and x′π1(λ0) = xπ1(λ0) − x′n+1.

2. The trace splitting

The construction of new hierarchical tiling systems starting from a given one
which we are going to describe now is more complex than those in subsection
1.4. In this construction new prototile types are again introduced, but, unlike the
previous construction we decide the prototile type of a Ti-tile by looking at a single
subtile (with known prototile type) in the subdivision of the chosen tile; using this
information we decide the prototile types of the other Ti−1-tiles in the subdivision.
In contrast to the earlier construction the new prototile types occur more uniformly.

Let (Ti, Si), i = 0, 1, 2, . . . , be a given tiling system with other notation associ-
ated as in the last section: In particular, all Si have the same cardinality n; Λ is
the relative position indexing set for the subdivision of Ti-tiles into Ti−1-tiles; the
multipliciy of prototile types for the above subdivision is given by the n×n matrix
A = (ai,j); if δ is a subtile in relative position λ in the subdivision of a tile τ , then
π1(λ) is the prototile type of δ and π2(λ) is the prototile type of τ .

2.1. Let S be a finite group. Let ψ : Λ → S be any function. We assume that
ψ(Λ) generates the group S. The next proposition describes the prototile set, the
relative position indexing set and the analogues of the maps π1, π2 for the new
hierarchical tiling system we are going to construct from S and ψ. So far we have
been enumerating the elements of the prototile sets S` by the integers 1, 2, . . . , n.
It is convenient to denote the latter set by S and refer to it as the prototile set,
when there is no likelihood of confusion.

2.2. Proposition. Let S be the set S ×S. Let

Λ =
{
{(s, σ), λ, (s′, σ′)} ∈ S × Λ× S | π1(λ) = s, π2(λ) = s′, ψ(λ) = σ′

−1
σ
}
.

Then S and Λ are respectively the prototile set and relative position indexing set
for a hierarchical tiling system. The analogues π1, π2 of π1, π2 are given by

π1({(s, σ), λ, (s′, σ′)}) = (s, σ),
π2({(s, σ), λ, (s′, σ′)}) = (s′, σ′).

The multiplicity matrix A is given by

a(s,σ),(s′,σ′) = #{λ ∈ Λ | π1(λ) = s, π2(λ) = s′, ψ(λ) = σ′
−1
σ}.

Proof. Observe that if {(s, σ), λ, (s′, σ′)} ∈ Λ and g ∈ S, then {(s, gσ), λ, (s′, gσ′)}
∈ Λ. In addition, if h ∈ S, λ ∈ Λ are given, then it is clear that there is a
unique choice of s, s′ ∈ S and h′ ∈ S such that {(s, h), λ, (s′, h′)} ∈ Λ. For, from
the definition of Λ, s = π1(λ), s′ = π2(λ) and h′ = h(ψ(λ))−1. Similarly, if h′ ∈
S, λ ∈ Λ, are given, then there is a unique choice of s, s′ ∈ S and h ∈ S such that
{(s, h), λ, (s′, h′)} ∈ Λ. For, from the definition of Λ, s = π1(λ), s′ = π2(λ) and h =
h′ψ(λ).
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2.2.1. To explain the construction of the new tiling system required in the propo-
sition, first we describe the subdivision of the new prototiles. By definition, any
new prototile τ ∈ Si is of the form (τ, h′) where τ ∈ Si and h′ ∈ S. We regard
the subdivision of τ in the original tiling system as a subdvision of τ in the new
tiling system by declaring the following prototile identifications: If δ is a subtile
in the subdivision of τ in relative position λ in the context of the original tiling
system, then we regard this subtile δ as a subtile δ of the subdvision of τ and
declare it to have prototile type (π1(λ), h) where h = h′ψ(λ). With these subdi-
vision rules it follows from our remarks in the previous paragraph that the set Λ
serves as the ‘relative position indexing set’ for the new tiling system for which the
maps π1, π2 indicated in the statement of the proposition serve as the analogues of
π1 and π2. The inflation identification between (s, σ) (regarded as an element of
S`) and (s, σ) (regarded as an element of S`+1) is defined to be the same as that
between s (regarded as an element of S`) and s (regarded as an element of S`+1).

2.2.2. Choose any infinite sequence λ1, . . . , λi, . . . , such that

λi ∈ Λ and π2(λi) = π1(λi+1).

Writing λi = {(si, σi), λi, (s′i, σ′i)}, this gives rise to a sequence (λ1, . . . , λi, . . . ) in
Λ, with π2(λi) = π1(λi+1). It can be arranged so that the latter sequence arises
from an admissible sequence Ti in the original hierarchical tiling system. In other
words, we may assume that (in the context of the original tiling system)

i) we can choose Ti-tiles δi, i = 0, 1, 2, . . . , such that δi occurs in the subdivison
of δi+1 in relative position λi+1 and

ii) any given T0-tile lies inside δi for sufficiently large i.

2.2.3. We regard the tiles of Ti, i = 0, 1, 2, . . . , as tiles of the new tiling system
T i, i = 0, 1, 2, . . . with prototile types identified as explained below. When a Ti-
tile τ is regarded as a T i-tile we denote the same by τ . We declare the prototile
type of δi to be π1(λi). Let τ be a T`-tile. To define the prototile type of τ we
choose a large enough i such that τ lies inside δi. Consider the (unique) sequence
of tiles τ = τ`, τ`+1, . . . , τj , τj+1, . . . , τi = δi such that τj is a Tj-tile occurring in
the subdivision of τj+1. Let µj ∈ Λ be the relative position of τj in the subdivision
of τj+1. By our remarks in the beginning of the proof, there is a unique sequence
µ`, µ`+1, . . . , µi = λi of elements of Λ of the form

µj = {(sj , hj), µj , (s′j , h′j)} satisfying π2(µj) = π1(µj+1).

We declare π1(µ`) to be the prototile type of τ .
The assumption that ψ(Λ) generates S ensures that for sufficiently large i every

S0-prototile type occurs in the i-fold subdivision of each T i-prototile. This can be
seen by imitating the proof of [EP, proposition 7 (iii) and (iv)].

This completes the proof of the proposition.

2.3. Lemma. Let A denote the C∗-algebra of the hierarchical tiling system T i given
by Proposition 2.2. The group S acts naturally as automorphisms of the C∗-algebra
A. There is a natural inclusion η : A → A. S acts as identity on η(A).

Proof. For this we recall that A is the inductive limit of certain finite dimensional
algebras Ak. The analogous Ak is the following: Let Xk be the set of finite se-
quences

Xk = {w = (λ1, λ2, . . . , λk) | λi ∈ Λ, π2(λi) = π1(λi+1)}.
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Ak is the algebra of (complex-valued) scalar matrices (aw,w′)w,w′∈Xk satisfying

aw,w′ = 0 if π2(λk) 6= π2(λ
′
k) where λk and λ

′
k are the k-th components of w and

w′. The projection λ 7→ λ from Λ to Λ induces maps w 7→ w from Xk to Xk.
Let {aw,w′}w,w′∈Xk ∈ Ak. Then the natural inclusion ηk : Ak → Ak is given by
ηk({aw,w′}) = {aw,w′}w,w′∈Xk where

aw,w′ =

{
0 if π2(λk) 6= π2(λ

′
k),

aw,w′ if π2(λk) = π2(λ
′
k),

where λk and λ
′
k are the k-th components of w and w′ respectively.

The group S acts on Λ: If g ∈ S and λ = {(s, σ), λ, (s′, σ′)}, then gλ =
{(s, gσ), λ, (s′, gσ′)}. In turn this gives rise to an action on Xk coordinatewise.
For g ∈ S and an element x of Ak represented by a matrix (aw,w′)w,w′∈Xk we
define gx to be the matrix (agw,w′)w,w′∈Xk where

agw,w′ = (ag−1w,g−1w′).

It is evident that S acts as identity on ηk(Ak). The inclusions ηk are compatible
with the inclusions φk : Ak → Ak+1 and φk : Ak → Ak+1, i.e., we have ηk+1 · φk =
φk.ηk. As A and A are C∗-inductive limits of Ak and Ak respectively, the maps
ηk give rise to the desired inclusion. It is also easy to check that the S action is
compatible with the inclusion of Ak into Ak+1. This completes the proof of the
lemma.

In [EP] we considered the problem of colouring the T0-tiles of a given hierarchical
tiling system satisfying some conditions like symmetry and frequency of occurrence
of colours, etc. We recall these notions below. We will see that Proposition 2.2 can
be applied to deduce that the colouring scheme described in [EP] in fact yields a
hierarchical tiling system. The frequency data implemented in that construction is
here interpreted in terms of the unique ‘trace’ of the associated C∗-algebras.

2.4. Definition. ‘Local (G, γ,M)-symmetry’. Let G be a finite group acting on
a finite set M : γ : G×M −→M (the elements of M will be the colours). Assume
that the tiles in T0 are coloured with the elements of M . We say that the colouring
of T0 has local (G, γ,M)-symmetry (or simply that T0 has (G, γ,M)-symmetry) if
given g ∈ G and given a patch Σ of the tiles of T0 in any bounded region, there
exists R > 0 such that in any disc of radius R one can find a copy Σ′ of the patch
Σ, the only change being that the colouring of Σ′ is obtained from that of Σ on
applying the permutation γ(g).

2.5. ‘Frequency data for colour occurrence’. We may wish to see colours in
certain frequencies by prescribing the desired ratios. Let C1, C2, . . . , CN be the
distinct G-orbits in M . Suppose that one wants to see the colours in C1, . . . , CN
in the frequency ratios a1, . . . , aN (positive integers). Later in the sequel we use
the notation {aµ}µ∈M for this frequency data, naturally with the assumption that
aµ = aµ′ if µ and µ′ belong to the same orbit. Let S′ be a set which is a disjoint
union of a1 copies of C1, a2 copies of C2, . . . , aN copies of CN . The group G acts
on S′. Let S = Aut(S′). For any function ψ : Λ → S whose image generates S,
Proposition 2.2 gives a hierarchical tiling system with prototiles indexed by S ×S
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and having relative position indexing set

Λ =
{
{(s, σ), λ, (s′, σ′)} | λ ∈ Λ, π1(λ) = s, π2(λ) = s′ and ψ(λ) = σ′

−1
σ
}
.

By Lemma 2.3, the group S = Aut(S′) and in particular the group G act as auto-
morphisms of the C∗-algebra of the tiling system.

2.6. Let us colour a T 0-tile δ having relative position index {(s, σ), λ, (s′, σ′)} by
σ(x) where x ∈ S′ is fixed. In other words, we colour an S0-prototile (s, σ) by
σ(x) and then colour T 0-tiles according to the prototile type. Since S′ is a disjoint
union of copies of G-orbits in M , clearly this is a colouring by elements of M .
This colouring has local (G, γ,M)-symmetry. To see this, let Σ be any patch of
tiles in T 0. We can assume that this patch is contained in some T j-tile, say, κ
of prototile type, say, (s, σ). For sufficiently large i, any T j+i-tile τ has T j-tiles
of all prototypes, in particular of prototile type (s, g) for any g ∈ Aut(S′). Local
(G, γ,M)-symmetry is an easy consequence of this.

To give a meaning to the frequency of occurrence of colours in the tiling in terms
of the associated C∗-algebra we gather below some definitions and known facts
about projections in C∗-algebras and traces.

A projection in a C∗-algebra A is a self-adjoint element p = p∗ such that p = p2.
Two projections p1, p2 are said to be equivalent (in symbols p1 ∼ p2) if there exists
y ∈ A such that p1 = yy∗, p2 = y∗y. An element x is positive if x = yy∗ for some
y ∈ A. The order relation in self-adjoint elements of A is defined by x ≤ y if y − x
is positive. A trace in A is a continuous (complex) scalar-valued linear map f such
that

i) f(xy) = f(yx), ∀x, y ∈ A,
ii) f(x) ≥ 0, if x is positive.
For the C∗-algebra A=limk(Ak) associated to a hierarchical tiling system, a

non-zero trace exists and is unique (up to normalization). The uniqueness is a
consequence of the assumption that every T0-prototile type occurs in the iterated
subdivision of any Ti-tile for sufficiently large i.

We describe below this unique trace.

2.7. The trace on the C∗-algebra of tiling spaces. We recall the set Xk of
finite sequences of elements of Λ:

Xk = {w = (λ1, λ2, . . . , λk) | λi ∈ Λ, π2(λi) = π1(λi+1)};
Ak is the algebra of (complex-valued) scalar matrices (aw,w′)w,w′∈Xk satisfying
aw,w′ = 0, if π2(λk) 6= π2(λ′k) where λk and λ′k are the k-th components of w and
w′. For w,w′ ∈ Xk denote by ẇ, ẇ′ ∈ Xk−1 the truncation. We recall the inclusion
φk−1 of Ak−1 into Ak which is defined as follows: Let x = (av,v′)v,v′∈Xk−1 be an
element of Ak−1. Let w = (λ1, . . . , λk−1, λk), w′ = (λ′1, . . . , λ

′
k−1, λ

′
k) ∈ Xk. The

image φk−1(x) of x is the matrix (aw,w′) where

aw,w′ =

{
0 if λk 6= λ′k,

aẇ,ẇ′ if λk = λ′k.

2.7.1. Let ξ denote the Perron-Frobenius eigenvalue [Ga] of the multiplicity ma-
trix A and denote the corresponding eigenvector by ~u = (us)s∈S . (Here, S =
{1, 2, . . . , n} and us are positive real numbers such that

∑
s us = 1.) To de-

fine a trace, first we define linear maps Trk : Ak → C (k = 1, 2, . . . ). With
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notation as above, for a (complex) scalar-valued matrix x ∈ Ak−1 of the form
x = (av,v′)v,v′∈Xk−1 we set

Trk−1(x) =
1

ξk−1

∑
v∈Xk−1

uπ2(λk−1)av,v

where λk−1 is the (k − 1)-th component of v. Viewing Ak−1 as a product of
matrix algebras, Trk−1 is a linear combination of the natural traces in these matrix
algebras.

2.8. Proposition. Let φk−1 denote the inclusion of Ak−1 into Ak and let I be the
identity element of any Ak. Then:

i) The above-defined traces satisfy the compatibility condition Trk(φk−1(x)) =
Trk−1(x) and give rise to a trace Tr : A → C.

ii) For any k, Trk(I) = 1.

Proof. i) Let x = (xv,v′ )v,v′∈Xk−1 ∈ Ak−1. Put φk−1(x) = y = (yw,w′)w,w′∈Xk .
Compute Trk of the right side. It equals

Trk(y) =
1
ξk

∑
w∈Xk

uπ2(λk)yw,w

=
1
ξk

∑
w∈Xk

uπ2(λk)xẇ,ẇ

=
1
ξk

∑
v∈Xk−1

 ∑
w∈Xk,ẇ=v

uπ2(λk)xv,v

 .

(∗)

But for a fixed v ∈ Xk−1 whose last coordinate is λk−1, we have

{w ∈ Xk : ẇ = v} = {(v, λ), λ ∈ Λ : π1(λ) = π2(λk−1)}.

Therefore ∑
w∈Xk,ẇ=v

uπ2(λk)xv,v =
∑

λ∈Λ,π1(λ)=π2(λk−1)

uπ2(λ)xv,v

=

 ∑
j∈{1,... ,n}

aπ2(λk−1),juj

 xv,v

= ξuπ2(λk−1)xv,v.

Substituting in (∗), we obtain

Trk(φk−1(x)) =
1
ξk

∑
v∈Xk−1

ξuπ2(λk−1)xv,v

=
1

ξk−1

∑
v∈Xk−1

uπ2(λk−1)xv,v

= Trk−1(x).
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ii) By i), Trk(I) = Trk−1(I) = · · · = Tr1(I). So it is sufficient to prove that
Tr1(I) = 1. We have

Tr1(I) =
1
ξ

∑
λ∈Λ

uπ2(λ) · 1

=
1
ξ

∑
j∈{1,... ,n}

 ∑
i∈{1,... ,n}

ujaij


=

1
ξ

∑
i∈{1,... ,n}

 ∑
j∈{1,... ,n}

ujaij


=

1
ξ

∑
i∈{1,... ,n}

ξui

= 1.

This completes the proof of the proposition.

Let Tr : A → C denote the similarly constructed trace on the C∗-algebra A of
the tiling system {T i}i given by Proposition 2.2. The explicit description of the
multiplicity matrix A allows us to relate the Perron-Frobenius eigenvectors [Ga] of
A and A.

2.9. Lemma. Let ~θ = (θs)s∈S be an eigenvector for the multiplicity matrix A

corresponding to an eigenvalue β. Define a vector ~θ = (θ(s,σ))s∈S,σ∈S by θ(s,σ) =
1

#(S)θs. Then ~θ is an eigenvector for A for which the corresponding eigenvalue

equals β. In particular, if ~θ is the Perron-Frobenius eigenvector for A, then ~θ is the
Perron-Frobenius eigenvector for A.

Proof. From the hypotheses of the lemma,
∑

s′∈S as,s′θs′ = βθs. We have∑
s′∈S,σ′∈S

a(s,σ),(s′,σ′)θ(s′,σ′) =
1

#(S)

∑
s′∈S,σ′∈S

a(s,σ),(s′,σ′)θs′ .

But for a fixed s′ ∈ S,∑
σ′∈S

a(s,σ),(s′,σ′) =
∑
σ′∈S

#{λ ∈ Λ | π1(λ) = s, π2(λ) = s′ and ψ(λ) = σ′
−1
σ}

= #{λ ∈ Λ | π1(λ) = s, π2(λ) = s′} = as,s′ .

Since every T 0-prototile type occurs in the k-fold subdivision of each T k-prototile
type for sufficiently large k, the matrix A

k
has all entries positive. From the Perron-

Frobenius theory [Ga] one knows that the Perron-Frobenius eigenvector is the only
eigenvector with all entries positive.

The lemma follows.

2.10. Corollary. For x ∈ A one has Tr(x) = Tr(η(x)) where η : A → A is the
natural inclusion.

Proof. This is a consequence of the explicit description of the traces in subsection
2.7.
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Define projections Πµ ∈ A1, (µ ∈M) as follows: Recall from subsection 2.6 that
S0-tiles are coloured by elements of M . Recall further that T0-tiles are coloured by
regarding such a tile δ as a tile δ of T 0 and then identifying the prototile type of δ
in S0. We set

Πµ = (aw,w′)w,w′∈X1

where

aw,w′ =

{
0 if w 6= w′,

1 if S0-tile π1(λ1) has colour µ, where w = (λ1).

With these preparations, we are ready to demonstrate the theorem which gives
an interpretation of the frequency of occurrence of the colours µ (µ ∈M) among the
T0-tiles. The G-action on A which figures in the theorem below has already been
discussed in subsection 2.5 and as mentioned there arises from the group action
explained in Lemma 2.3.

2.11. Theorem. i) The projections Πµ split the identity 1 ∈ η(A) ⊂ A. For
g ∈ G, gΠµ = Πgµ (∀µ). The numbers {Tr(Πµ)}µ∈M are in the ratio {aµ}µ namely,
the prescribed frequency ratio of subsection 2.5.

ii) Let P, P ′ be projections of A such that P ≤ P ′. Then there exist projections
Qµ, Q′µ ∈ A, (µ ∈M) such that

(a) Qµ ≤ Q′µ ≤ Πµ,
(b) for g ∈ G, gQµ = Qgµ, gQ′µ = Q′gµ (∀µ),
(c) if Q =

∑
µQ

µ and Q′ =
∑

µQ
′µ, then Q,Q′ ∈ A and P∼AQ,P ′∼AQ′,

(d) {Tr(Qµ)}µ (resp. {Tr(Q′µ)}µ) are in the ratio {aµ}µ.

Proof. From the definition of Πµ, the sum
∑
µ∈M Πµ is the element of A1 given by

aw,w′ =

{
0 if w 6= w′,

1 if w = w′,

which is the unit element. The equation gΠµ = Πgµ is a consequence of the def-
inition of the group action in Lemma 2.3 and the definition of Πµ above. As in
subsection 2.7.1, let ξ denote the Perron-Frobenius eigenvalue of the multiplicity
matrix A with corresponding eigenvector ~u = (us)s∈S such that

∑
s us = 1. For

a (complex) scalar-valued matrix x ∈ Ak of the form x = (av,v′)v,v′∈Xk by the
definition of Tr,

Tr(x) = ξ−k
∑
v∈Xk

uπ2(λk)av,v

where λk is the k-th component of v.

2.11.1. From Lemma 2.9, if ~u = (u(s,σ))s∈S,σ∈S is the vector given by u(s,σ) =
1

#(S)us, then ~u is the Perron-Frobenius eigenvector for A and evidently∑
s∈S,σ∈S

us,σ = 1.
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Thus for a (complex) scalar-valued matrix x ∈ Ak of the form x = (av,v′)v,v′∈Xk
by the definition of Tr,

Tr(x) = ξ−k
∑
v∈Xk

uπ2(λk)av,v

where λk is the k-th component of v.
Observe the following about the structure of algebras Ak: For s ∈ S let A(s)

k be
the subalgebra of matrices (aw,w′)w,w′∈Xk for which aw,w′ 6= 0 only if both π2(λk)
and π2(λ′k) equal s, where λk and λ′k are the k-th components of w and w′. Then
{A(s)

k }s are matrix algebras and Ak is the product
∏
s∈S A

(s)
k . Similarly, Ak is also

a product of matrix algebras: For (s, σ) ∈ S ×S, let A(s,σ)

k be the subalgebra of
matrices (aw,w′)w,w′∈Xk for which aw,w′ 6= 0 only if π2(λk) and π2(λ

′
k) both equal

(s, σ), where λk and λ
′
k are the k-th components of w and w′. Then {A(s,σ)

k }(s,σ)

are matrix algebras and Ak is the product
∏

(s,σ)∈S×S
A(s,σ)

k .
C∗-algebras A which are inductive limits of finite dimensional C∗-algebras Ak

are also called AF -algebras and their structure has been studied in detail. For a
comprehensive treatise see [Ef] or [Go]. The following facts are thus widely known.

Any projection P of A is equivalent to a projection Q of Ak for sufficiently
large k. Moreover, given two projections P, P ′ ∈ A such that P ≤ P ′, we can
choose projections Q,Q′ ∈ Ak for large k such that Q ≤ Q′, P ∼ Q and P ′ ∼ Q′.
Given two projections Q,Q′ ∈ Ak such that Q ≤ Q′ one can choose orthogonal
minimal projections e1, e2, . . . , em, em+1, . . . , em+n such that

∑m
i=1 ei = Q and∑m+n

j=1 ej = Q′. Two projections in a matrix algebra are equivalent iff they have
the same rank; minimal projections have rank 1. Any minimal projection of Ak
lies in one of the factors in the product Ak =

∏
s∈S A

(s)
k .

2.11.2. Given any minimal projection es ∈ A(s)
k its image ηk(es) under the inclu-

sion η : Ak → Ak equals a sum of orthogonal minimal projections (es,σ)σ∈S where

es,σ ∈ A
(s,σ)

k . We have Tr(es) = ξ−kus and Tr(es,σ) = 1
#(S)ξ

−kus.

2.11.3. For w ∈ Xk define the minimal projection ew ∈ Ak to be the matrix
(av,v′)v,v′∈Xk given by

av,v′ =

{
1 if v = v′ = w,

0 otherwise.

Then (ew)w∈Xk is a maximal orthogonal family of minimal projections in Ak. For
a subset I of Xk let eI denote the projection in Ak given by eI =

∑
w∈I ew. Given

projections Q,Q′ ∈ Ak such that Q ≤ Q′ we can choose subsets I ⊂ I ′ ⊂ Xk such
that Q ∼ eI and Q′ ∼ eI′ . Similarly, define minimal projections ew ∈ Ak to be the
matrix (av,v′)v,v′∈Xk given by

av,v′ =

{
1 if v = v′ = w,

0 otherwise.

Then (ew)w∈Xk is a maximal orthogonal family of minimal projections in Ak. We
have gew = egw, ∀g ∈ G. For a subset I of Xk let eI denote the projection in Ak
given by eI =

∑
w∈I ew.
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2.11.4. We will now make explicit the decomposition 2.11.2 for a minimal projec-
tion ew, w ∈ Xk. Write w = (λ1, λ2, . . . , λk). Let σ ∈ S. By our remarks in the
beginning of the proof of Proposition 2.2, there is a unique sequence λ1, λ2, . . . , λk
of elements of Λ of the form λj = {(sj , hj), λj , (s′j , h′j)} satisfying h′k = σ and
π2(λj) = π1(λj+1). This represents a unique element wσ ∈ Xk. Then η(ew) =∑
σ∈S

ewσ . We now have most of the notation needed to specify the splitting of
projections in the form stated in the theorem. We first do this for the minimal
projections ew ∈ Ak. It suffices to define eµw to be the sum of ewσ over those σ ∈ S

such that µ is the colour (according to subsection 2.6) of the T 0-tile in relative
position wσ in a T k-tile of prototile type (π2(λk), σ). Here, λk is the k-th compo-
nent of w. This gives rise to a splitting ew =

∑
µ∈M eµw where eµw are projections

in Ak. Subsection 2.6 can be used to translate this into an algebraic expression
for eµw. It is immediate from the definition of group action in Lemma 2.3 that for
g ∈ G, geµw = egµw . By using subsection 2.11.1 one deduces that {Tr(eµw)}µ are in
the ratio {aµ}µ.

For the projections eI =
∑

w∈I ew for a subset I ⊂ Xk we define eµI =
∑

w∈I e
µ
w.

Then the fact that geµI = egµI , ∀g ∈ G and {Tr(eµI )}µ are in the ratio {aµ}µ are
immediate consequences of the corresponding facts for minimal projections. If P
is a projection in A, then for large enough k, P ∼ eI for some eI ∈ Ak as above.
Further, if P, P ′ ∈ A are two projections such that P ≤ P ′, then for a suitably
large k we can choose subsets I ⊂ J ⊂ Xk so that P ∼ eI and P ′ ∼ eJ . When
the above splittings are done for the projection eI ∈ A1, taking I = X1 we get
a decomposition of the unit element. We obtain the same splitting when this is
carried out regarding the unit element as eI ∈ Ak for I = Xk. This gives rise to
the part of the statement in the theorem which asserts “Qµ ≤ Q′µ ≤ Πµ”.
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