The first cohomology group of the generalized Morava stabilizer algebra
HTML articles powered by AMS MathViewer
- by Hirofumi Nakai and Douglas C. Ravenel
- Proc. Amer. Math. Soc. 131 (2003), 1629-1639
- DOI: https://doi.org/10.1090/S0002-9939-02-06718-7
- Published electronically: September 19, 2002
- PDF | Request permission
Abstract:
There exists a $p$-local spectrum $T(m)$ with $BP_{*}(T(m))$= $\!BP_{*}[t_{1},\dots ,t_{m}]$. Its Adams-Novikov $E_2$-term is isomorphic to \begin{equation*} \text {Ext}_{\Gamma (m+1)}(BP_*,BP_*), \end{equation*} where \begin{equation*} \Gamma (m+1) = BP_{*} (BP)/ \left (t_{1},\dots ,t_{m}\right ) = BP_{*}[t_{m+1},t_{m+2},\dots ]. \end{equation*} In this paper we determine the groups \begin{equation*} \text {Ext}^{1}_{\Gamma (m+1)} (BP_{*},v_{n}^{-1}BP_{*}/I_{n}) \end{equation*} for all $m,n>0$. Its rank ranges from $n+1$ to $n^{2}$ depending on the value of $m$.References
- I. Ichigi. The chromatic groups $H^0M_2^1(T(2))$ at the prime two. To appear in Mem. Fac. Kochi Univ. (Math.).
- Ippei Ichigi and Katsumi Shimomura, The chromatic $E_1$-term $\textrm {Ext}^0(v^{-1}_3\textrm {BP}_\ast /(3,v_1,v^\infty _2)[t_1])$, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 21 (2000), 63–71. MR 1744540
- I. Ichigi, H. Nakai, and D. C. Ravenel. The chromatic Ext groups $\text {Ext}_{\Gamma (m+1)}^{0}(BP_{*},M_2^{1})$. Trans. Amer. Math. Soc., 354:3789–3813, 2002.
- N. Kodama and K. Shimomura. On the homotopy groups of a spectrum related to Ravenel’s spectra $T(n)$. J. Fac. Educ. Tottori Univ. (Nat. Sci.), 42:17–30, 1993.
- Y. Kamiya and K. Shimomura. The homotopy groups $\pi _*(L_ 2V(0)\wedge T(k))$. Hiroshima Mathematical Journal, 31:391–408, 2001.
- J. P. May, The cohomology of restricted Lie algebras and of Hopf algebras, J. Algebra 3 (1966), 123–146. MR 193126, DOI 10.1016/0021-8693(66)90009-3
- John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264. MR 174052, DOI 10.2307/1970615
- Haynes R. Miller and Douglas C. Ravenel, Morava stabilizer algebras and the localization of Novikov’s $E_{2}$-term, Duke Math. J. 44 (1977), no. 2, 433–447. MR 458410
- Haynes R. Miller, Douglas C. Ravenel, and W. Stephen Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. (2) 106 (1977), no. 3, 469–516. MR 458423, DOI 10.2307/1971064
- Mark Mahowald and Katsumi Shimomura, The Adams-Novikov spectral sequence for the $L_2$ localization of a $v_2$ spectrum, Algebraic topology (Oaxtepec, 1991) Contemp. Math., vol. 146, Amer. Math. Soc., Providence, RI, 1993, pp. 237–250. MR 1224918, DOI 10.1090/conm/146/01226
- H. Mitsui and K. Shimomura. The Ext groups $H^0M^1_2(1)$. J. Fac. Educ. Tottori Univ. (Nat. Sci.), 42:85–101, 1993.
- H. Nakai and D. C. Ravenel. The method of infinite descent in stable homotopy theory II. To appear.
- H. Nakai and D. C. Ravenel. The structure of the general chromatic $E_1$-term $\text {Ext}_{\Gamma (m+1)}^0 (M_1^1)$ and $\text {Ext}^1_{\Gamma (m+1)}(BP_*/(p))$. To appear in Osaka J. Math.
- H. Nakai and D. Yoritomi. The structure of the general chromatic $E_1$-term $\operatorname {Ext}_{\Gamma (2)}^0(M_2^1)$ for $p=2$. To appear.
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042
- Douglas C. Ravenel, The microstable Adams-Novikov spectral sequence, Une dégustation topologique [Topological morsels]: homotopy theory in the Swiss Alps (Arolla, 1999) Contemp. Math., vol. 265, Amer. Math. Soc., Providence, RI, 2000, pp. 193–209. MR 1803959, DOI 10.1090/conm/265/04250
- D. C. Ravenel. The method of infinite descent in stable homotopy theory I. In D. M. Davis, editor, Recent Progress in Homotopy Theory, volume 293 of Contemporary Mathematics, pages 251–284, Providence, Rhode Island, 2002. American Mathematical Society.
- Katsumi Shimomura, The homotopy groups of the $L_2$-localized Mahowald spectrum $X\langle 1\rangle$, Forum Math. 7 (1995), no. 6, 685–707. MR 1359422, DOI 10.1515/form.1995.7.685
- K. Shimomura. The homotopy groups $\pi _*(L_n T(m)\wedge V(n-2))$. Recent progress in homotopy theory (Baltimore, MD, 2000), 285–297, Contemp. Math., 293, Amer. Math. Soc., Providence, RI, 2002.
- K. Shimomura. Chromatic $E_1$-terms – up to April 1995. J. Fac. Educ. Tottori Univ. (Nat. Sci.), 44:1–6, 1995.
Bibliographic Information
- Hirofumi Nakai
- Affiliation: Oshima National College of Maritime Technology, 1091-1 komatsu Oshima-cho Oshima-gun, Yamaguchi 742-2193, Japan
- Email: nakai@c.oshima-k.ac.jp
- Douglas C. Ravenel
- Affiliation: Department of Mathematics, University of Rochester, Rochester, New York 14627
- Email: drav@math.rochester.edu
- Received by editor(s): June 14, 2001
- Received by editor(s) in revised form: December 19, 2001
- Published electronically: September 19, 2002
- Additional Notes: The second author acknowledges support from NSF grant DMS-9802516
- Communicated by: Paul Goerss
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 1629-1639
- MSC (2000): Primary 55P42, 55T15; Secondary 14L05, 20Jxx
- DOI: https://doi.org/10.1090/S0002-9939-02-06718-7
- MathSciNet review: 1950296