Endpoint estimates for the circular maximal function
HTML articles powered by AMS MathViewer
- by Sanghyuk Lee
- Proc. Amer. Math. Soc. 131 (2003), 1433-1442
- DOI: https://doi.org/10.1090/S0002-9939-02-06781-3
- Published electronically: September 19, 2002
- PDF | Request permission
Abstract:
We consider the problem of endpoint estimates for the circular maximal function defined by \[ Mf(x)=\sup _{1<t<2}\left |\int _{S^1} f(x-ty)d\sigma (y)\right | \] where $d\sigma$ is the normalized surface area measure on $S^1$. Let $\Delta$ be the closed triangle with vertices $(0,0), (1/2, 1/2), (2/5,1/5)$. We prove that for $(1/p,1/q)\in \Delta \setminus \{(1/2,1/2), (2/5,1/5)\}$, there is a constant $C$ such that $\|Mf\|_{L^q(\mathbb R^2)}\le C\|f\|_{L^p(\mathbb R^2)}.$ Furthermore, $\|Mf\|_{L^{5,\infty }(\mathbb R^2)}\le C \|f\|_{L^{5/2,1}(\mathbb R^2)}$.References
- J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69–85. MR 874045, DOI 10.1007/BF02792533
- J. Bourgain, On high-dimensional maximal functions associated to convex bodies, Amer. J. Math. 108 (1986), no. 6, 1467–1476. MR 868898, DOI 10.2307/2374532
- Jean Bourgain, Estimations de certaines fonctions maximales, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 10, 499–502 (French, with English summary). MR 812567
- Anthony Carbery, Andreas Seeger, Stephen Wainger, and James Wright, Classes of singular integral operators along variable lines, J. Geom. Anal. 9 (1999), no. 4, 583–605. MR 1757580, DOI 10.1007/BF02921974
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275, DOI 10.1007/978-3-642-66451-9
- Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge, Wave front sets, local smoothing and Bourgain’s circular maximal theorem, Ann. of Math. (2) 136 (1992), no. 1, 207–218. MR 1173929, DOI 10.2307/2946549
- W. Schlag, A generalization of Bourgain’s circular maximal theorem, J. Amer. Math. Soc. 10 (1997), no. 1, 103–122. MR 1388870, DOI 10.1090/S0894-0347-97-00217-8
- Wilhelm Schlag and Christopher D. Sogge, Local smoothing estimates related to the circular maximal theorem, Math. Res. Lett. 4 (1997), no. 1, 1–15. MR 1432805, DOI 10.4310/MRL.1997.v4.n1.a1
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- T. Tao, Endpoint bilinear restriction theorems for the cone and some sharp null form estimates, to appear, Math. Z.
- Terence Tao, Ana Vargas, and Luis Vega, A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc. 11 (1998), no. 4, 967–1000. MR 1625056, DOI 10.1090/S0894-0347-98-00278-1
- T. Tao and A. Vargas, A bilinear approach to cone multipliers. I. Restriction estimates, Geom. Funct. Anal. 10 (2000), no. 1, 185–215. MR 1748920, DOI 10.1007/s000390050006
- T. Tao and A. Vargas, A bilinear approach to cone multipliers. II. Applications, Geom. Funct. Anal. 10 (2000), no. 1, 216–258. MR 1748921, DOI 10.1007/s000390050007
- T. Wolff, A sharp cone restriction estimate, Annals of Math. 153 (2001), 661-698.
Bibliographic Information
- Sanghyuk Lee
- Affiliation: Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Korea
- Email: huk@euclid.postech.ac.kr
- Received by editor(s): June 12, 2001
- Received by editor(s) in revised form: December 7, 2001
- Published electronically: September 19, 2002
- Additional Notes: The author was partially supported by the BK21 Project (PI: Jong-Guk Bak).
- Communicated by: Andreas Seeger
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 1433-1442
- MSC (2000): Primary 42B25; Secondary 35L05
- DOI: https://doi.org/10.1090/S0002-9939-02-06781-3
- MathSciNet review: 1949873