On bifurcation points of a complex polynomial
HTML articles powered by AMS MathViewer
- by Zbigniew Jelonek
- Proc. Amer. Math. Soc. 131 (2003), 1361-1367
- DOI: https://doi.org/10.1090/S0002-9939-02-06822-3
- Published electronically: December 16, 2002
- PDF | Request permission
Abstract:
Let $f: \mathbb {C}^n \to \mathbb {C}$ be a polynomial of degree $d$. Assume that the set $\tilde {K}_\infty (f)=\{ y \in \mathbb {C} :$ there is a sequence $x_l\rightarrow \infty$ s.t. $f(x_l)\rightarrow y$ and $\Vert d f(x_l)\Vert \rightarrow 0\}$ is finite. We prove that the set $\tilde {K} (f)= K_0(f)\cup \tilde {K}_\infty (f)$ of generalized critical values of $f$ (hence in particular the set of bifurcation points of $f$) has at most $(d-1)^n$ points. Moreover, $\#\tilde {K}_\infty (f)\le (d-1)^{n-1}.$ We also compute the set $\tilde {K} (f)$ effectively.References
- Riccardo Benedetti and Jean-Jacques Risler, Real algebraic and semi-algebraic sets, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990. MR 1070358
- M. V. Fedoryuk, The asymptotics of a Fourier transform of the exponential function of a polynomial, Soviet Math. Dokl. 17 (1976), 486-490.
- H. V. Ha, D. T. Le Sur la topologie des polynôme complexes, Acta Mathematica Vietnamica 9 (1984), 21-32.
- H. V. Ha, Sur la fibration globale des polynômes de deux variables, CRAS 309 (1989), 231-234.
- Huy Vui Ha, Nombres de Lojasiewicz et singularités à l’infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 7, 429–432 (French, with English summary). MR 1075664
- Zbigniew Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), no. 3, 259–266. MR 1244397, DOI 10.4064/ap-58-3-259-266
- Zbigniew Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), no. 1, 1–35. MR 1717542, DOI 10.1007/s002080050316
- Z. Jelonek, K. Kurdyka, On asymptotic critical values of a complex polynomial, Crelles Journal, to appear.
- Van Thanh Le and Mutsuo Oka, Note on estimation of the number of the critical values at infinity, Kodai Math. J. 17 (1994), no. 3, 409–419. Workshop on Geometry and Topology (Hanoi, 1993). MR 1296909, DOI 10.2996/kmj/1138040033
- Patrick J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. of Math. (2) 146 (1997), no. 3, 647–691. MR 1491449, DOI 10.2307/2952457
Bibliographic Information
- Zbigniew Jelonek
- Affiliation: Instytut Matematyczny, Polska Akademia Nauk, Św. Tomasza 30, 31-027 Kraków, Poland
- Address at time of publication: Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
- Email: najelone@cyf-kr.edu.pl
- Received by editor(s): April 17, 2001
- Received by editor(s) in revised form: January 8, 2002
- Published electronically: December 16, 2002
- Additional Notes: The author was partially supported by KBN grant number 2P03A01722
- Communicated by: Michael Stillman
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 1361-1367
- MSC (2000): Primary 14D06, 14Q20, 14R25
- DOI: https://doi.org/10.1090/S0002-9939-02-06822-3
- MathSciNet review: 1949865