Existence and nonexistence of global solutions of some non-local degenerate parabolic systems
HTML articles powered by AMS MathViewer
- by Weibing Deng, Yuxiang Li and Chunhong Xie
- Proc. Amer. Math. Soc. 131 (2003), 1573-1582
- DOI: https://doi.org/10.1090/S0002-9939-02-06866-1
- Published electronically: December 16, 2002
- PDF | Request permission
Abstract:
This paper establishes a new criterion for global existence and nonexistence of positive solutions of the non-local degenerate parabolic system \begin{align*} u_t&=v^p\left (\Delta u+a\int _\Omega v dx\right ), v_t&=u^q\left (\Delta v+b\int _\Omega u dx\right ),\quad x\in \Omega , t>0, \end{align*} with homogeneous Dirichlet boundary conditions, where $\Omega \subset \mathbb {R}^N$ is a bounded domain with a smooth boundary $\partial \Omega$ and $p, q, a, b$ are positive constants. For all initial data, it is proved that there exists a global positive solution iff $\int _\Omega \varphi (x) dx\leq 1/\sqrt {ab}$, where $\varphi (x)$ is the unique positive solution of the linear elliptic problem $-\Delta \varphi (x)=1, x\in \Omega ; \varphi (x)=0, x\in \partial \Omega .$References
- Y.X. Li, W.B. Deng, and C.H. Xie, Global existence and nonexistence for degenerate parabolic systems, Proc. Amer. Math. Soc., 130(2002), 3661–3670.
- J. Bebernes and A. Bressan, Thermal behavior for a confined reactive gas, J. Differential Equations 44 (1982), no. 1, 118–133. MR 651690, DOI 10.1016/0022-0396(82)90028-6
- C. V. Pao, Blowing-up of solution for a nonlocal reaction-diffusion problem in combustion theory, J. Math. Anal. Appl. 166 (1992), no. 2, 591–600. MR 1160947, DOI 10.1016/0022-247X(92)90318-8
- John M. Chadam, A. Peirce, and Hong-Ming Yin, The blowup property of solutions to some diffusion equations with localized nonlinear reactions, J. Math. Anal. Appl. 169 (1992), no. 2, 313–328. MR 1180894, DOI 10.1016/0022-247X(92)90081-N
- Keng Deng, Man Kam Kwong, and Howard A. Levine, The influence of nonlocal nonlinearities on the long time behavior of solutions of Burgers’ equation, Quart. Appl. Math. 50 (1992), no. 1, 173–200. MR 1146631, DOI 10.1090/qam/1146631
- Victor A. Galaktionov and Howard A. Levine, A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal. 34 (1998), no. 7, 1005–1027. MR 1636000, DOI 10.1016/S0362-546X(97)00716-5
- Philippe Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29 (1998), no. 6, 1301–1334. MR 1638054, DOI 10.1137/S0036141097318900
- J. Furter and M. Grinfeld, Local vs. nonlocal interactions in population dynamics, J. Math. Biol. 27 (1989), no. 1, 65–80. MR 984226, DOI 10.1007/BF00276081
- Jeffrey R. Anderson and Keng Deng, Global existence for degenerate parabolic equations with a non-local forcing, Math. Methods Appl. Sci. 20 (1997), no. 13, 1069–1087. MR 1465394, DOI 10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO;2-Y
- Weibing Deng, Zhiwen Duan, and Chunhong Xie, The blow-up rate for a degenerate parabolic equation with a non-local source, J. Math. Anal. Appl. 264 (2001), no. 2, 577–597. MR 1876751, DOI 10.1006/jmaa.2001.7696
- Jeffrey R. Anderson, Local existence and uniqueness of solutions of degenerate parabolic equations, Comm. Partial Differential Equations 16 (1991), no. 1, 105–143. MR 1096835, DOI 10.1080/03605309108820753
- V.A. Galaktionov, S.P. Kurdyumov and A.A. Samarskii, A parabolic system of quasilinear equations I, Differential Equations, 19(1983), 1558–1571.
- V.A. Galaktionov, S.P. Kurdyumov and A.A. Samarskii, A parabolic system of quasilinear equations II, Differential Equations, 21(1985), 1049–1062.
- Howard A. Levine, The role of critical exponents in blowup theorems, SIAM Rev. 32 (1990), no. 2, 262–288. MR 1056055, DOI 10.1137/1032046
- Alexander A. Samarskii, Victor A. Galaktionov, Sergei P. Kurdyumov, and Alexander P. Mikhailov, Blow-up in quasilinear parabolic equations, De Gruyter Expositions in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 1995. Translated from the 1987 Russian original by Michael Grinfeld and revised by the authors. MR 1330922, DOI 10.1515/9783110889864.535
- Michael Wiegner, Blow-up for solutions of some degenerate parabolic equations, Differential Integral Equations 7 (1994), no. 5-6, 1641–1647. MR 1269676
- Michael Wiegner, A degenerate diffusion equation with a nonlinear source term, Nonlinear Anal. 28 (1997), no. 12, 1977–1995. MR 1436366, DOI 10.1016/S0362-546X(96)00027-2
- Shu Wang, Mingxin Wang, and Chun-hong Xie, A nonlinear degenerate diffusion equation not in divergence form, Z. Angew. Math. Phys. 51 (2000), no. 1, 149–159. MR 1745296, DOI 10.1007/PL00001503
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0241821
- Avner Friedman and Bryce McLeod, Blow-up of solutions of nonlinear degenerate parabolic equations, Arch. Rational Mech. Anal. 96 (1986), no. 1, 55–80. MR 853975, DOI 10.1007/BF00251413
- Emmanuele DiBenedetto, Degenerate parabolic equations, Universitext, Springer-Verlag, New York, 1993. MR 1230384, DOI 10.1007/978-1-4612-0895-2
- Emmanuele DiBenedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J. 32 (1983), no. 1, 83–118. MR 684758, DOI 10.1512/iumj.1983.32.32008
Bibliographic Information
- Weibing Deng
- Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
- Email: wbdeng@nju.edu.cn
- Yuxiang Li
- Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
- MR Author ID: 699784
- Email: lieyuxiang@yahoo.com.cn
- Chunhong Xie
- Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
- Received by editor(s): January 8, 2002
- Published electronically: December 16, 2002
- Communicated by: David S. Tartakoff
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 1573-1582
- MSC (2000): Primary 35K50, 35K55, 35K65
- DOI: https://doi.org/10.1090/S0002-9939-02-06866-1
- MathSciNet review: 1949888