## On quasi-affine transforms of Read’s operator

HTML articles powered by AMS MathViewer

- by Thomas Schlumprecht and Vladimir G. Troitsky PDF
- Proc. Amer. Math. Soc.
**131**(2003), 1405-1413 Request permission

## Abstract:

We show that C. J. Read’s example of an operator $T$ on $\ell _1$ which does not have any non-trivial invariant subspaces is not the adjoint of an operator on a predual of $\ell _1$. Furthermore, we present a bounded diagonal operator $D$ such that even though $D^{-1}$ is unbounded, the operator $D^{-1}TD$ is a bounded operator on $\ell _1$ with invariant subspaces, and is adjoint to an operator on $c_0$.## References

- Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw,
*The invariant subspace problem: some recent advances*, Rend. Istit. Mat. Univ. Trieste**29**(1998), no. suppl., 3–79 (1999). Workshop on Measure Theory and Real Analysis (Italian) (Grado, 1995). MR**1696022** - P. Enflo,
*On the invariant subspace problem in Banach spaces*, Séminaire Maurey–Schwartz (1975–1976) Espaces $L^{p}$, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 14-15, Centre Math., École Polytech., Palaiseau, 1976, pp. 7. MR**0473871** - Per Enflo,
*On the invariant subspace problem for Banach spaces*, Acta Math.**158**(1987), no. 3-4, 213–313. MR**892591**, DOI 10.1007/BF02392260 - C. J. Read,
*A solution to the invariant subspace problem on the space $l_1$*, Bull. London Math. Soc.**17**(1985), no. 4, 305–317. MR**806634**, DOI 10.1112/blms/17.4.305 - C. J. Read,
*A short proof concerning the invariant subspace problem*, J. London Math. Soc. (2)**34**(1986), no. 2, 335–348. MR**856516**, DOI 10.1112/jlms/s2-34.2.335 - Heydar Radjavi and Peter Rosenthal,
*Invariant subspaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR**0367682**, DOI 10.1007/978-3-642-65574-6 - Béla Sz.-Nagy and Ciprian Foiaş,
*Vecteurs cycliques et quasi-affinités*, Studia Math.**31**(1968), 35–42 (French). MR**236756**, DOI 10.4064/sm-31-1-35-42

## Additional Information

**Thomas Schlumprecht**- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 260001
- Email: schlump@math.tamu.edu
**Vladimir G. Troitsky**- Affiliation: Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- Email: vtroitsky@math.ualberta.ca
- Received by editor(s): November 30, 2001
- Published electronically: December 6, 2002
- Additional Notes: The first author was supported by the NSF. Most of the work on the paper was done during the
*Workshop on linear analysis and probability*at Texas A&M University, College Station - Communicated by: David R. Larson
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**131**(2003), 1405-1413 - MSC (2000): Primary 47A15; Secondary 47B37
- DOI: https://doi.org/10.1090/S0002-9939-02-06896-X
- MathSciNet review: 1949870