Interpolation for multipliers on reproducing kernel Hilbert spaces
HTML articles powered by AMS MathViewer
- by Vladimir Bolotnikov
- Proc. Amer. Math. Soc. 131 (2003), 1373-1383
- DOI: https://doi.org/10.1090/S0002-9939-02-06899-5
- Published electronically: December 6, 2002
- PDF | Request permission
Abstract:
All solutions of a tangential interpolation problem for contractive multipliers between two reproducing kernel Hilbert spaces of analytic vector-valued functions are characterized in terms of certain positive kernels. In a special important case when the spaces consist of analytic functions on the unit ball of $\mathbb {C}^d$ and the reproducing kernels are of the form $(1-\langle z,w\rangle ^{-1})I_p$ and $(1-\langle z,w\rangle )^{-1}I_q$, the characterization leads to a parametrization of the set of all solutions in terms of a linear fractional transformation.References
- Jim Agler and John E. McCarthy, Complete Nevanlinna-Pick kernels, J. Funct. Anal. 175 (2000), no. 1, 111–124. MR 1774853, DOI 10.1006/jfan.2000.3599
- D. Alpay and V. Bolotnikov, On tangential interpolation in reproducing kernel Hilbert modules and applications, Topics in interpolation theory (Leipzig, 1994) Oper. Theory Adv. Appl., vol. 95, Birkhäuser, Basel, 1997, pp. 37–68. MR 1473250
- Daniel Alpay, Vladimir Bolotnikov, and H. Turgay Kaptanoğlu, The Schur algorithm and reproducing kernel Hilbert spaces in the ball, Linear Algebra Appl. 342 (2002), 163–186. MR 1873434, DOI 10.1016/S0024-3795(01)00448-7
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- William Arveson, Subalgebras of $C^*$-algebras. III. Multivariable operator theory, Acta Math. 181 (1998), no. 2, 159–228. MR 1668582, DOI 10.1007/BF02392585
- Joseph A. Ball, Tavan T. Trent, and Victor Vinnikov, Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, Operator theory and analysis (Amsterdam, 1997) Oper. Theory Adv. Appl., vol. 122, Birkhäuser, Basel, 2001, pp. 89–138. MR 1846055
- V. Bolotnikov and H. Dym, On boundary interpolation for matrix Schur functions, Preprint, 1999.
- Louis de Branges and James Rovnyak, Square summable power series, Holt, Rinehart and Winston, New York-Toronto-London, 1966. MR 0215065
- Frank Beatrous Jr. and Jacob Burbea, Positive-definiteness and its applications to interpolation problems for holomorphic functions, Trans. Amer. Math. Soc. 284 (1984), no. 1, 247–270. MR 742424, DOI 10.1090/S0002-9947-1984-0742424-4
- Harry Dym, $J$ contractive matrix functions, reproducing kernel Hilbert spaces and interpolation, CBMS Regional Conference Series in Mathematics, vol. 71, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1989. MR 1004239, DOI 10.1090/cbms/071
- Ben Silver (ed.), American Mathematical Society Translations. Series 2. Vol. 138, American Mathematical Society Translations, Series 2, vol. 138, American Mathematical Society, Providence, RI, 1988. Seven papers translated from the Russian; Translation by H. H. McFaden. MR 940259, DOI 10.1090/trans2/138
- Scott McCullough, The local de Branges-Rovnyak construction and complete Nevanlinna-Pick kernels, Algebraic methods in operator theory, Birkhäuser Boston, Boston, MA, 1994, pp. 15–24. MR 1284929
- Gelu Popescu, Interpolation problems in several variables, J. Math. Anal. Appl. 227 (1998), no. 1, 227–250. MR 1652931, DOI 10.1006/jmaa.1998.6101
- Peter Quiggin, For which reproducing kernel Hilbert spaces is Pick’s theorem true?, Integral Equations Operator Theory 16 (1993), no. 2, 244–266. MR 1205001, DOI 10.1007/BF01358955
- Donald Sarason, Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 10, John Wiley & Sons, Inc., New York, 1994. A Wiley-Interscience Publication. MR 1289670
Bibliographic Information
- Vladimir Bolotnikov
- Affiliation: Department of Mathematics, The College of William and Mary, Williamsburg, Virginia 23187-8795
- MR Author ID: 266846
- Email: vladi@math.wm.edu
- Received by editor(s): February 24, 2001
- Received by editor(s) in revised form: March 23, 2001
- Published electronically: December 6, 2002
- Communicated by: Joseph A. Ball
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 1373-1383
- MSC (2000): Primary 41A05, 46E22
- DOI: https://doi.org/10.1090/S0002-9939-02-06899-5
- MathSciNet review: 1949867