Algebras without noetherian filtrations
HTML articles powered by AMS MathViewer
- by J. T. Stafford and J. J. Zhang
- Proc. Amer. Math. Soc. 131 (2003), 1329-1338
- DOI: https://doi.org/10.1090/S0002-9939-02-06972-1
- Published electronically: December 6, 2002
- PDF | Request permission
Abstract:
We provide examples of finitely generated noetherian PI algebras for which there is no finite dimensional filtration with a noetherian associated graded ring; thus we answer negatively a question of Lorenz (1988).References
- A. V. Jategaonkar, Localization in Noetherian rings, London Mathematical Society Lecture Note Series, vol. 98, Cambridge University Press, Cambridge, 1986. MR 839644, DOI 10.1017/CBO9780511661938
- Arun Vinayak Jategaonkar, Morita duality and Noetherian rings, J. Algebra 69 (1981), no. 2, 358–371. MR 617084, DOI 10.1016/0021-8693(81)90210-6
- Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR 1721834, DOI 10.1090/gsm/022
- Hui Shi Li and F. Van Oystaeyen, Zariskian filtrations, Comm. Algebra 17 (1989), no. 12, 2945–2970. MR 1030604, DOI 10.1080/00927878908823888
- Huishi Li and Freddy van Oystaeyen, Zariskian filtrations, $K$-Monographs in Mathematics, vol. 2, Kluwer Academic Publishers, Dordrecht, 1996. MR 1420862, DOI 10.1007/978-94-015-8759-4
- Martin Lorenz, On Gel′fand-Kirillov dimension and related topics, J. Algebra 118 (1988), no. 2, 423–437. MR 969682, DOI 10.1016/0021-8693(88)90031-2
- M. Lorenz, Gelfand-Kirillov Dimension and Poincaré Series, Cuadernos de Algebra, No.7, Universidad de Grenada, Grenada, 1988.
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- Joseph J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics, vol. 85, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 538169
- J. T. Stafford and N. R. Wallach, The restriction of admissible modules to parabolic subalgebras, Trans. Amer. Math. Soc. 272 (1982), no. 1, 333–350. MR 656493, DOI 10.1090/S0002-9947-1982-0656493-1
- J. T. Stafford and J. J. Zhang, Homological properties of (graded) Noetherian $\textrm {PI}$ rings, J. Algebra 168 (1994), no. 3, 988–1026. MR 1293638, DOI 10.1006/jabr.1994.1267
- Darin R. Stephenson and James J. Zhang, Growth of graded Noetherian rings, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1593–1605. MR 1371143, DOI 10.1090/S0002-9939-97-03752-0
- Q.-S. Wu and J. J. Zhang, Homological identities for noncommutative rings, J. Algebra 242 (2001), no. 2, 516–535. MR 1848957, DOI 10.1006/jabr.2001.8817
- Amnon Yekutieli, Dualizing complexes over noncommutative graded algebras, J. Algebra 153 (1992), no. 1, 41–84. MR 1195406, DOI 10.1016/0021-8693(92)90148-F
- Amnon Yekutieli and James J. Zhang, Rings with Auslander dualizing complexes, J. Algebra 213 (1999), no. 1, 1–51. MR 1674648, DOI 10.1006/jabr.1998.7657
Bibliographic Information
- J. T. Stafford
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
- Email: jts@umich.edu
- J. J. Zhang
- Affiliation: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195
- MR Author ID: 314509
- Email: zhang@math.washington.edu
- Received by editor(s): September 25, 2000
- Published electronically: December 6, 2002
- Additional Notes: Both authors were supported in part by the NSF. The second author was also supported by the Royalty Research Fund of the University of Washington
- Communicated by: Lance W. Small
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 1329-1338
- MSC (2000): Primary 16P40, 16P90, 16R99, 16W70
- DOI: https://doi.org/10.1090/S0002-9939-02-06972-1
- MathSciNet review: 1949861