Nonvanishing of Fourier coefficients of modular forms
HTML articles powered by AMS MathViewer
- by Emre Alkan
- Proc. Amer. Math. Soc. 131 (2003), 1673-1680
- DOI: https://doi.org/10.1090/S0002-9939-02-06758-8
- Published electronically: November 6, 2002
- PDF | Request permission
Abstract:
Let $f=\sum _{n=1}^\infty a_f(n)q^n$ be a cusp form with integer weight $k\ge 2$ that is not a linear combination of forms with complex multiplication. For $n\ge 1$, let \[ i_f(n):=\max \{i:a_f(n+j)=0\quad \text {for all $0\le j\le i$}\}. \] Improving on work of Balog, Ono, and Serre we show that $i_f(n)\ll _{f,\phi }\phi (n)$ for almost all $n$, where $\phi (x)$ is any good function (e.g. such as $\log \log (x)$) monotonically tending to infinity with $x$. Using a result of Fouvry and Iwaniec, if $f$ is a weight 2 cusp form for an elliptic curve without complex multiplication, then we show for all $n$ that $i_f(n)\ll _{f,\varepsilon } n^{\frac {69}{169}+\varepsilon }$. We also obtain conditional results depending on the Generalized Riemann Hypothesis and the Lang-Trotter Conjecture.References
- A. Balog and K. Ono, The Chebotarev density theorem in short intervals and some questions of Serre, J. Number Theory 91 (2001), 356–371.
- Étienne Fouvry and Henryk Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), no. 3, 311–333. MR 1027058, DOI 10.1016/0022-314X(89)90067-X
- Noam D. Elkies, Distribution of supersingular primes, Astérisque 198-200 (1991), 127–132 (1992). Journées Arithmétiques, 1989 (Luminy, 1989). MR 1144318
- Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401 (French). MR 644559
Bibliographic Information
- Emre Alkan
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- Email: alkan@math.wisc.edu
- Received by editor(s): January 9, 2002
- Published electronically: November 6, 2002
- Communicated by: David E. Rohrlich
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 1673-1680
- MSC (2000): Primary 11F30
- DOI: https://doi.org/10.1090/S0002-9939-02-06758-8
- MathSciNet review: 1953571