Limits of residually irreducible -adic Galois representations

Author:
Chandrashekhar Khare

Journal:
Proc. Amer. Math. Soc. **131** (2003), 1999-2006

MSC (2000):
Primary 11R32, 11R39

DOI:
https://doi.org/10.1090/S0002-9939-03-06955-7

Published electronically:
February 5, 2003

MathSciNet review:
1963742

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we produce examples of converging sequences of Galois representations, and study some of their properties.

**[Ca]**Carayol, H.,*Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet*, in*-adic monodromy and the Birch and Swinnerton-Dyer conjecture*, 213-237, Contemp. Math., 165, AMS, 1994. MR**95i:11059****[FM]**Fontaine, J.-M., Mazur, B.,*Geometric Galois representations*, Elliptic curves, modular forms, and Fermat's last theorem, Internat. Press, Cambridge (1995), 41-78. MR**96h:11049****[K]**Khare, C.,*On isomorphisms between deformation rings and Hecke rings*, preprint available at*http://www.math.utah.edu/~ shekhar/papers.html*.**[K1]**Khare, C.,*Modularity of -adic Galois representations via -adic approximations*, in preparation.**[KhRa]**Khare, C., Rajan, C. S.,*The density of ramified primes in semisimple -adic Galois representations*, International Mathematics Research Notices, no. 12 (2001), 601-607. MR**2002e:11066****[KR]**Khare, C., Ramakrishna, R.,*Finiteness of Selmer groups and deformation rings*, preprint available at*http://www.math.utah.edu/~ shekhar/papers.html*.**[Ka]**Katz, N.,*Higher congruences between modular forms*, Annals of Math. 101 (1975), 332-367.**[R]**Ramakrishna, R.,*Infinitely ramified representations*, Annals of Mathematics 151 (2000), 793-815. MR**54:5120****[R1]**Ramakrishna, R.,*Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur*, to appear in Annals of Math.**[S1]**Serre, J-P.,*Quelques applications du théorème de densité de Chebotarev*, Inst. Hautes Études Sci. Publ. Math., no. 54 (1981), 323-401. MR**83k:12011****[T1]**Taylor, R.,*On icosahedral Artin representations II*, preprint.**[TW]**Taylor, R., Wiles, A.,*Ring-theoretic properties of certain Hecke algebras*, Ann. of Math. (2) 141 (1995), 553-572. MR**96d:11072****[W]**Wiles, A.,*Modular elliptic curves and Fermat's last theorem*, Ann. of Math. 141 (1995), 443-551. MR**96d:11071**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
11R32,
11R39

Retrieve articles in all journals with MSC (2000): 11R32, 11R39

Additional Information

**Chandrashekhar Khare**

Affiliation:
Department of Mathematics, University of Utah, 155 S 1400 E, Salt lake City, Utah 84112 – and – School of Mathematics, TIFR, Homi Bhabha Road, Mumbai 400 005, India

Email:
shekhar@math.utah.edu, shekhar@math.tifr.res.in

DOI:
https://doi.org/10.1090/S0002-9939-03-06955-7

Received by editor(s):
February 5, 2002

Published electronically:
February 5, 2003

Communicated by:
David E. Rohrlich

Article copyright:
© Copyright 2003
American Mathematical Society