A zero topological entropy map with recurrent points not

Author:
Petra Sindelárová

Journal:
Proc. Amer. Math. Soc. **131** (2003), 2089-2096

MSC (2000):
Primary 26A18, 37E05

DOI:
https://doi.org/10.1090/S0002-9939-03-06971-5

Published electronically:
February 5, 2003

MathSciNet review:
1963754

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that there is a continuous map of the unit interval into itself of type which has a trajectory disjoint from the set of recurrent points of , but contained in the closure of . In particular, is not closed. A function of type , with nonclosed set of recurrent points, was found by H. Chu and J. Xiong [Proc. Amer. Math. Soc. **97** (1986), 361-366]. However, there is no trajectory contained in , since any point in is eventually mapped into . Moreover, our construction is simpler.

We use to show that there is a continuous map of the interval of type for which the set of recurrent points is not an set. This example disproves a conjecture of A. N. Sharkovsky et al., from 1989. We also provide another application of .

**[1]**L. Alsedà, M. Chas and J. Smítal,*On the structure of the**-limit sets for continuous maps of the interval*, Discrete dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 9, 1719-1729. MR**2000i:37047****[2]**L. Block,*Stability of periodic orbits in the theorem of Sarkovskii*, Proc. Amer. Math. Soc.**81**(1981), 333-336. MR**82b:58071****[3]**L. S. Block and W. A. Coppel,*Dynamics in One Dimension*, Lecture Notes in Math. 1513, Springer, Berlin - Heidelberg - New York, 1992. MR**93g:58091****[4]**A. M. Bruckner and J. Smítal,*A characterization of**-limit sets of maps of the interval with zero topological entropy*, Ergod. Th. & Dynam. Sys.**13**(1993), 7-9. MR**94k:26006****[5]**H. Chu and J. Xiong,*A counterexample in dynamical systems of the interval*, Proc. Amer. Math. Soc.**97**(1986), 361-366. MR**87i:58140****[6]**A. Denjoy,*Sur les courbes définies par les équations differentielles à la surface du tore*, J. Math. Pures Appl.**11**(1932), 333-375.**[7]**V. V. Fedorenko,*Classification of simple one-dimensional dynamical systems*, (Russian) Akad. Nauk Ukrain. SSR Inst. Mat. Preprint 1991, no. 5, 30 pp. MR**92m:58037****[8]**V. V. Fedorenko, A. N. Sharkovsky and J. Smítal,*Characterization of weakly chaotic maps of the interval*, Proc. Amer. Math. Soc.**110**(1990), 141-148. MR**91a:58148****[9]**H. Furstenberg,*Recurrence in ergodic theory and combinatorial number theory*, Princeton University Press, Princeton, 1981. MR**82j:28010****[10]**M. Misiurewicz,*Horseshoes for mappings of the interval*, Bull. Acad. Polon. Sci. Sér. Sci. Math.**27**(1979), 167-169. MR**81b:58033****[11]**A. N. Sharkovsky,*Classification of one-dimensional dynamical systems*, European Conference on Iteration Theory (Caldes de Malavella, 1987), 42-55, World Sci. Publishing, Teaneck, NJ, 1989. MR**92a:58075****[12]**A. N. Sharkovsky, S. F. Kolyada, A. G. Sivak and V. V. Fedorenko,*Dynamics of One-dimensional Mappings*, Naukova Dumka, Kijev, 1989, 216 pp. (Russian) MR**91k:58065****[13]**A. N. Sharkovsky, S. F. Kolyada, A. G. Sivak and V. V. Fedorenko,*Dynamics of One-dimensional Maps*, Kluwer Academic Publishers Group, Dordrecht, 1997. MR**98k:58083****[14]**A. N. Sharkovsky, Yu. L. Maistrenko and E. Yu. Romanenko,*Difference equations and their applications*, Kluwer Academic Publishers Group, Dordrecht, 1993. MR**95j:39001****[15]**P. Sindelárová,*A zero topological entropy map for which periodic points are not a**set*, Ergod. Th. & Dynam. Sys.**22**(2002), 947-949.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
26A18,
37E05

Retrieve articles in all journals with MSC (2000): 26A18, 37E05

Additional Information

**Petra Sindelárová**

Affiliation:
Mathematical Institute, Silesian University in Opava, Bezručovo nám. 13, 746 01 Opava, Czech Republic

Email:
Petra.Sindelarova@math.slu.cz

DOI:
https://doi.org/10.1090/S0002-9939-03-06971-5

Keywords:
Topological entropy,
recurrent points,
periodic points,
$\omega$-limit set

Received by editor(s):
January 7, 2002

Published electronically:
February 5, 2003

Additional Notes:
This research was supported, in part, by contracts 201/00/0859 from the Grant Agency of Czech Republic and CEZ:J10/98:192400002 from the Czech Ministry of Education. The support of these institutions is gratefully acknowledged

Dedicated:
Dedicated to Professor Jaroslav Smítal on the occasion of his 60th birthday

Communicated by:
Michael Handel

Article copyright:
© Copyright 2003
American Mathematical Society