Renorming of spaces
Author:
Jan Rychtár
Journal:
Proc. Amer. Math. Soc. 131 (2003), 2063-2070
MSC (2000):
Primary 46B03, 46E10
DOI:
https://doi.org/10.1090/S0002-9939-03-07001-1
Published electronically:
February 5, 2003
MathSciNet review:
1963751
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: If is a scattered Eberlein compact space, then
admits an equivalent dual norm that is uniformly rotund in every direction. The same is shown for the dual to the Johnson-Lindenstrauss space
.
- [1] K. Alster, Some remarks on Eberlein compacts, Fundamenta Mathematicae 104 (1979), 43-46. MR 80k:54035
- [2] S. Argyros and V. Farmaki, On the structure of weakly compact subsets of Hilbert spaces and applications to the geometry of Banach spaces, Trans. Amer. Math. Soc. 289 (1985), 409-427. MR 86h:46023
- [3] Y. Benyamini, M. E. Rudin and M. Wage, Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), 309-324. MR 58:30065
- [4] J.M.F Castillo and M. González, Three space problems in Banach space theory, Lecture Notes in Math., Springer-Verlag, 1997. MR 99a:46034
- [5] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Monographs and Surveys in Pure and Applied Mathematics 64, Pitman, 1993. MR 94d:46012
- [6] M. Fabian, G. Godefroy and V. Zizler, The structure of uniformly Gâteaux smooth Banach spaces, Israel J. Math. 124 (2001), 243-252. MR 2002g:46015
- [7] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant and V. Zizler, Functional Analysis and infinite dimensional geometry, Canadian Math. Soc. Books, 8 (Springer-Verlag), 2001. MR 2002f:46001
- [8] W. B. Johnson and J. Lindenstrauss, Some remarks on weakly compactly generated Banach spaces, Israel J. Math. 17 (1974), 219-230. MR 54:5808
- [9] A. Moltó, J. Orihuela and S. Troyanski, Locally uniformly rotund renorming and fragmentability, Proc. London Math. Soc. (3) 75 (1997), 619-640. MR 98e:46011
- [10] S. Negrepontis, Banach Spaces and Topology, Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 1045-1142. MR 86i:46018
- [11] M. Raja, Mesurabilité de Borel et renormages dans les espaces de Banach, (Doctoral dissertation), Printemps, 1998.
- [12] J. Rychtár, Uniformly Gâteaux differentiable norms in spaces with unconditional basis, Serdica Math. J. 26 (2000), 353-358.MR 2003a:46025
- [13] D. Yost, The Johnson-Lindenstrauss Space, Extracta Mathematicae 12 (1997), 185-192. MR 99a:46027
- [14] V. Zizler, Nonseparable Banach spaces, Handbook on Banach spaces (W. B. Johnson and J. Lindenstrauss, eds.), to appear.
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B03, 46E10
Retrieve articles in all journals with MSC (2000): 46B03, 46E10
Additional Information
Jan Rychtár
Affiliation:
Department of Mathematical Analysis, Charles University, Faculty of Mathematics and Physics, Sokolovká 83, 186 75 Praha 8, Czech Republic
Address at time of publication:
Department of Mathematics and Statistics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email:
rychtar@karlin.mff.cuni.cz, jrychtar@math.ualberta.ca
DOI:
https://doi.org/10.1090/S0002-9939-03-07001-1
Keywords:
Eberlein compacts,
uniform rotundity in every direction
Received by editor(s):
July 15, 2001
Published electronically:
February 5, 2003
Additional Notes:
Supported in part by GAČR 201/01/1198, A 1019003, NSERC 7926 and GAUK 277/2001. This paper is based on part of the author’s Ph.D. thesis written under the supervision of Professor V. Zizler
Communicated by:
Jonathan M. Borwein
Article copyright:
© Copyright 2003
American Mathematical Society