On the existence of chaotic and hypercyclic semigroups on Banach spaces
HTML articles powered by AMS MathViewer
- by Teresa Bermúdez, Antonio Bonilla and Antonio Martinón
- Proc. Amer. Math. Soc. 131 (2003), 2435-2441
- DOI: https://doi.org/10.1090/S0002-9939-02-06762-X
- Published electronically: November 13, 2002
- PDF | Request permission
Abstract:
We prove that every separable infinite dimensional complex Banach space admits a hypercyclic uniformly continuous semigroup. We also prove that there exist Banach spaces admitting no chaotic strongly continuous semigroups.References
- Shamim I. Ansari, Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal. 148 (1997), no. 2, 384–390. MR 1469346, DOI 10.1006/jfan.1996.3093
- S. A. Argyros and V. Felouzis, Interpolating hereditarily indecomposable Banach spaces, J. Amer. Math. Soc. 13 (2000), no. 2, 243–294. MR 1750954, DOI 10.1090/S0894-0347-00-00325-8
- Á. Császár and J. Deák, Simultaneous extensions of proximities, semi-uniformities, contiguities and merotopies. III, Math. Pannon. 2 (1991), no. 2, 3–23. MR 1149946
- Luis Bernal-González, On hypercyclic operators on Banach spaces, Proc. Amer. Math. Soc. 127 (1999), no. 4, 1003–1010. MR 1476119, DOI 10.1090/S0002-9939-99-04657-2
- José Bonet, Félix Martínez-Giménez, and Alfredo Peris, A Banach space which admits no chaotic operator, Bull. London Math. Soc. 33 (2001), no. 2, 196–198. MR 1815423, DOI 10.1112/blms/33.2.196
- José Bonet and Alfredo Peris, Hypercyclic operators on non-normable Fréchet spaces, J. Funct. Anal. 159 (1998), no. 2, 587–595. MR 1658096, DOI 10.1006/jfan.1998.3315
- R. DeLaubenfels, H. Emamirad, Chaos for functions of discrete and continuous weighted shift operators, Ergodic Theory Dynam. Systems 21 (2001), 1411-1427.
- Wolfgang Desch, Wilhelm Schappacher, and Glenn F. Webb, Hypercyclic and chaotic semigroups of linear operators, Ergodic Theory Dynam. Systems 17 (1997), no. 4, 793–819. MR 1468101, DOI 10.1017/S0143385797084976
- Robert L. Devaney, An introduction to chaotic dynamical systems, 2nd ed., Addison-Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. MR 1046376
- H. Emamirad, Hypercyclicity in the scattering theory for linear transport equation, Trans. Amer. Math. Soc. 350 (1998), no. 9, 3707–3716. MR 1451598, DOI 10.1090/S0002-9947-98-02062-5
- V. Ferenczi, Quotient hereditarily indecomposable Banach spaces, Canad. J. Math. 51 (1999), no. 3, 566–584. MR 1701326, DOI 10.4153/CJM-1999-026-4
- Gilles Godefroy and Joel H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229–269. MR 1111569, DOI 10.1016/0022-1236(91)90078-J
- W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), no. 4, 851–874. MR 1201238, DOI 10.1090/S0894-0347-1993-1201238-0
- Karl-Goswin Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 345–381. MR 1685272, DOI 10.1090/S0273-0979-99-00788-0
- Domingo A. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99 (1991), no. 1, 179–190. MR 1120920, DOI 10.1016/0022-1236(91)90058-D
- Gerd Herzog, On linear operators having supercyclic vectors, Studia Math. 103 (1992), no. 3, 295–298. MR 1202014, DOI 10.4064/sm-103-3-295-298
- F. Martínez-Giménez, A. Peris, Chaos for backward shift operators, Int. J. of Bifurcation and Chaos 12 (2002), 1703–1715.
- R. I. Ovsepian and A. Pełczyński, On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in $L^{2}$, Studia Math. 54 (1975), no. 2, 149–159. MR 394137, DOI 10.4064/sm-54-2-149-159
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- A. Peris, Personal communication.
- F. Räbiger and W. J. Ricker, $C_0$-groups and $C_0$-semigroups of linear operators on hereditarily indecomposable Banach spaces, Arch. Math. (Basel) 66 (1996), no. 1, 60–70. MR 1363778, DOI 10.1007/BF01323983
- S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17–22. MR 241956, DOI 10.4064/sm-32-1-17-22
- Héctor N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), no. 3, 993–1004. MR 1249890, DOI 10.1090/S0002-9947-1995-1249890-6
- Angus Ellis Taylor and David C. Lay, Introduction to functional analysis, 2nd ed., John Wiley & Sons, New York-Chichester-Brisbane, 1980. MR 564653
Bibliographic Information
- Teresa Bermúdez
- Affiliation: Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna (Tenerife), Spain
- Email: tbermude@ull.es
- Antonio Bonilla
- Affiliation: Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna (Tenerife), Spain
- Email: abonilla@ull.es
- Antonio Martinón
- Affiliation: Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna (Tenerife), Spain
- Email: anmarce@ull.es
- Received by editor(s): December 8, 2001
- Received by editor(s) in revised form: March 11, 2002
- Published electronically: November 13, 2002
- Additional Notes: The first author was supported in part by Consejería de Educación del Gobierno de Canarias PI 2001/039 (Spain) and Universidad de La Laguna, ref:1802010204.
The second author was supported in part by DGESIC Grant PB 98-0444 (Spain) and by Consejería de Educación del Gobierno de Canarias PI 1999/105 (Spain).
The third author was supported in part by Consejería de Educación del Gobierno de Canarias PI 2001/039 (Spain). - Communicated by: Joseph A. Ball
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2435-2441
- MSC (2000): Primary 47A16, 47D03
- DOI: https://doi.org/10.1090/S0002-9939-02-06762-X
- MathSciNet review: 1974641