Approximation methods for nonlinear operator equations
HTML articles powered by AMS MathViewer
- by C. E. Chidume and H. Zegeye
- Proc. Amer. Math. Soc. 131 (2003), 2467-2478
- DOI: https://doi.org/10.1090/S0002-9939-02-06769-2
- Published electronically: November 13, 2002
- PDF | Request permission
Abstract:
Let $E$ be a real normed linear space and $A: E \rightarrow E$ be a uniformly quasi-accretive map. For arbitrary $x_1\in E$ define the sequence $x_n \in E$ by $x_{n+1}:=x_n-\alpha _nAx_n,~n\geq 1,$ where $\{\alpha _n\}$ is a positve real sequence satisfying the following conditions: (i) $\sum \alpha _n=\infty$; (ii) $\lim \alpha _n=0$. For $x^*\in N(A):=\{x\in E:Ax=0\}$, assume that $\sigma :=\inf _{ n\in N_0 } \frac {\psi (||x_{n+1}-x^*||)}{||x_{n+1}-x^*||}>0$ and that $||Ax_{n+1}-Ax_n||\rightarrow 0$, where $N_0:=\{n\in N$ (the set of all positive integers): $x_{n+1}\neq x^*\}$ and $\psi :[0,\infty )\rightarrow [0,\infty )$ is a strictly increasing function with $\psi (0)=0$. It is proved that a Mann-type iteration process converges strongly to $x^*$. Furthermore if, in addition, $A$ is a uniformly continuous map, it is proved, without the condition on $\sigma$, that the Mann-type iteration process converges strongly to $x^*$. As a consequence, corresponding convergence theorems for fixed points of hemi-contractive maps are proved.References
- Ya. I. Al′ber and S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J. 4 (1994), no. 2, 39–54. MR 1274188
- Felix E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875–882. MR 232255, DOI 10.1090/S0002-9904-1967-11823-8
- S.-S. Chang, On Chidume’s open questions and approximation solutions of multi-valued strongly accretive mapping equations in Banach spaces, J. Math. Anal. Appl. 216 (1997), 94$-$111.
- Shih-sen Chang, On Chidume’s open questions and approximate solutions of multivalued strongly accretive mapping equations in Banach spaces, J. Math. Anal. Appl. 216 (1997), no. 1, 94–111. MR 1487255, DOI 10.1006/jmaa.1997.5661
- C. E. Chidume, Iterative construction of fixed points for multivalued operators of the monotone type, Appl. Anal. 23 (1986), no. 3, 209–218. MR 870488, DOI 10.1080/00036818608839641
- C. E. Chidume, Iterative approximation of fixed points of Lipschitzian strictly pseudocontractive mappings, Proc. Amer. Math. Soc. 99 (1987), no. 2, 283–288. MR 870786, DOI 10.1090/S0002-9939-1987-0870786-4
- Xiao Man Chen, Fundamental reducility [reducibility] of the normal extension of $J$-subnormal operators on $\Pi _K$ spaces, Northeast. Math. J. 6 (1990), no. 1, 85–90. MR 1071109
- C. E. Chidume, Approximation of fixed points of strongly pseudocontractive mappings, Proc. Amer. Math. Soc. 120 (1994), no. 2, 545–551. MR 1165050, DOI 10.1090/S0002-9939-1994-1165050-6
- C. E. Chidume, Iterative solutions of nonlinear equations of the strongly accretive type, Math. Nachr. 189 (1998), 49–60. MR 1492923, DOI 10.1002/mana.19981890105
- C. E. Chidume, Convergence theorems for strongly pseudo-contractive and strongly accretive maps, J. Math. Anal. Appl. 228 (1998), no. 1, 254–264. MR 1659921, DOI 10.1006/jmaa.1998.6130
- C. E. Chidume and Chika Moore, Steepest descent method for equilibrium points of nonlinear systems with accretive operators, J. Math. Anal. Appl. 245 (2000), no. 1, 142–160. MR 1756581, DOI 10.1006/jmaa.2000.6744
- C. E. Chidume and Chika Moore, The solution by iteration of nonlinear equations in uniformly smooth Banach spaces, J. Math. Anal. Appl. 215 (1997), no. 1, 132–146. MR 1478855, DOI 10.1006/jmaa.1997.5628
- C. E. Chidume and S. A. Mutangadura, An example of the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2359–2363. MR 1823919, DOI 10.1090/S0002-9939-01-06009-9
- C. E. Chidume, Habtu Zegeye, and Benselamonyuy Ntatin, A generalized steepest descent approximation for the zeros of $m$-accretive operators, J. Math. Anal. Appl. 236 (1999), no. 1, 48–73. MR 1702695, DOI 10.1006/jmaa.1999.6421
- Lei Deng, On Chidume’s open questions, J. Math. Anal. Appl. 174 (1993), no. 2, 441–449. MR 1215624, DOI 10.1006/jmaa.1993.1129
- Lei Deng, Iteration processes for nonlinear Lipschitzian strongly accretive mappings in $L_p$ spaces, J. Math. Anal. Appl. 188 (1994), no. 1, 128–140. MR 1301721, DOI 10.1006/jmaa.1994.1416
- Lei Deng and Xie Ping Ding, Iterative approximation of Lipschitz strictly pseudocontractive mappings in uniformly smooth Banach spaces, Nonlinear Anal. 24 (1995), no. 7, 981–987. MR 1321738, DOI 10.1016/0362-546X(94)00115-X
- J. C. Dunn, Iterative construction of fixed points for multivalued operators of the monotone type, J. Functional Analysis 27 (1978), no. 1, 38–50. MR 477162, DOI 10.1016/0022-1236(78)90018-6
- Shiro Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147–150. MR 336469, DOI 10.1090/S0002-9939-1974-0336469-5
- Robert M. May, Collision damping of two-stream instabilities in a plasma, Phys. Fluids 7 (1964), 1826–1829. MR 171590, DOI 10.1063/1.2746782
- Li Shan Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), no. 1, 114–125. MR 1353071, DOI 10.1006/jmaa.1995.1289
- Li-Wei Liu and Yu-Qiang Li, On generalized set-valued variational inclusions, J. Math. Anal. Appl. 261 (2001), no. 1, 231–240. MR 1850969, DOI 10.1006/jmaa.2001.7493
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- C. Moore and B. V. C. Nnoli, Iterative solution of nonlinear equations involving set-valued uniformly accretive operators, Comput. Math. Appl. 42 (2001), no. 1-2, 131–140. MR 1834473, DOI 10.1016/S0898-1221(01)00138-9
- M. O. Osilike, Iterative solution of nonlinear equations of the $\phi$-strongly accretive type, J. Math. Anal. Appl. 200 (1996), no. 2, 259–271. MR 1391148, DOI 10.1006/jmaa.1996.0203
- M. O. Osilike, Iterative construction of fixed points of multi-valued operators of the accretive type, Soochow J. Math. 22 (1996), no. 4, 485–494. MR 1426554
- M. O. Osilike, Iterative construction of fixed points of multi-valued operators of the accretive type. II, Soochow J. Math. 24 (1998), no. 2, 141–146. MR 1631528
- B. E. Rhoades and L. Saliga, Some fixed point iteration procedures. II, Nonlinear Anal. Forum 6 (2001), no. 1, 193–217. Nonlinear analysis and its applications (St. John’s, NF, 1999). MR 1844482
- Shi Sheng Zhang, On the convergence problems of Ishikawa and Mann iterative processes with error for $\Phi$-pseudo contractive type mappings, Appl. Math. Mech. 21 (2000), no. 1, 1–10 (Chinese, with English and Chinese summaries); English transl., Appl. Math. Mech. (English Ed.) 21 (2000), no. 1, 1–12. MR 1765333, DOI 10.1007/BF02458533
- Xinlong Weng, Iterative construction of fixed points of a dissipative type operator, Tamkang J. Math. 23 (1992), no. 3, 205–212. MR 1195312
- J. Horn, Über eine hypergeometrische Funktion zweier Veränderlichen, Monatsh. Math. Phys. 47 (1939), 359–379 (German). MR 91, DOI 10.1007/BF01695508
Bibliographic Information
- C. E. Chidume
- Affiliation: The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
- MR Author ID: 232629
- Email: chidume@ictp.trieste.it
- H. Zegeye
- Affiliation: The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
- Email: habz@ictp.trieste.it
- Received by editor(s): December 8, 2001
- Received by editor(s) in revised form: March 18, 2002
- Published electronically: November 13, 2002
- Additional Notes: The second author undertook this work with the support of the “ICTP Programme for Training and Research in Italian Laboratories, Trieste, Italy".
- Communicated by: Joseph A. Ball
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2467-2478
- MSC (2000): Primary 47H04, 47H06, 47H30, 47J05, 47J25
- DOI: https://doi.org/10.1090/S0002-9939-02-06769-2
- MathSciNet review: 1974645