Vanishing of cohomology over Gorenstein rings of small codimension
HTML articles powered by AMS MathViewer
- by Liana M. Şega
- Proc. Amer. Math. Soc. 131 (2003), 2313-2323
- DOI: https://doi.org/10.1090/S0002-9939-02-06788-6
- Published electronically: November 14, 2002
- PDF | Request permission
Abstract:
We prove that if $M$, $N$ are finite modules over a Gorenstein local ring $R$ of codimension at most $4$, then the vanishing of $\operatorname {Ext}^n_R(M,N)$ for $n\gg 0$ is equivalent to the vanishing of $\operatorname {Ext}^n_R(N,M)$ for $n\gg 0$. Furthermore, if $\widehat {R}$ has no embedded deformation, then such vanishing occurs if and only if $M$ or $N$ has finite projective dimension.References
- Tokuji Araya and Yuji Yoshino, Remarks on a depth formula, a grade inequality and a conjecture of Auslander, Comm. Algebra 26 (1998), no. 11, 3793–3806. MR 1647079, DOI 10.1080/00927879808826375
- Luchezar L. Avramov, Homological asymptotics of modules over local rings, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 33–62. MR 1015512, DOI 10.1007/978-1-4612-3660-3_{3}
- L. L. Avramov, Modules of finite virtual projective dimension, Invent. Math. 96 (1989), no. 1, 71–101. MR 981738, DOI 10.1007/BF01393971
- Luchezar L. Avramov and Ragnar-Olaf Buchweitz, Support varieties and cohomology over complete intersections, Invent. Math. 142 (2000), no. 2, 285–318. MR 1794064, DOI 10.1007/s002220000090
- Luchezar L. Avramov, Vesselin N. Gasharov, and Irena V. Peeva, Complete intersection dimension, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 67–114 (1998). MR 1608565
- Rikard Bøgvad, Gorenstein rings with transcendental Poincaré-series, Math. Scand. 53 (1983), no. 1, 5–15. MR 733933, DOI 10.7146/math.scand.a-12010
- Hans-Bjørn Foxby, On the $\mu ^{i}$ in a minimal injective resolution. II, Math. Scand. 41 (1977), no. 1, 19–44. MR 476801, DOI 10.7146/math.scand.a-11700
- C. Huneke, D. Jorgensen, Symmetry in the vanishing of $\operatorname {Ext}$ over Gorenstein rings, Preprint, 2001.
- Craig Huneke and Roger Wiegand, Tensor products of modules, rigidity and local cohomology, Math. Scand. 81 (1997), no. 2, 161–183. MR 1612887, DOI 10.7146/math.scand.a-12871
- Friedrich Ischebeck, Eine Dualität zwischen den Funktoren Ext und Tor, J. Algebra 11 (1969), 510–531 (German). MR 237613, DOI 10.1016/0021-8693(69)90090-8
- S. Iyengar, Depth for complexes, and intersection theorems, Math. Z. 230 (1999), no. 3, 545–567. MR 1680036, DOI 10.1007/PL00004705
- David A. Jorgensen, A generalization of the Auslander-Buchsbaum formula, J. Pure Appl. Algebra 144 (1999), no. 2, 145–155. MR 1732626, DOI 10.1016/S0022-4049(98)00057-7
- C. Jacobsson, On the positivity of the deviations of a local ring, Uppsala Univ., Dept. of Math., Report 1983:2.
- Carl Jacobsson, Andrew R. Kustin, and Matthew Miller, The Poincaré series of a codimension four Gorenstein ring is rational, J. Pure Appl. Algebra 38 (1985), no. 2-3, 255–275. MR 814181, DOI 10.1016/0022-4049(85)90013-1
- Andrew R. Kustin, Gorenstein algebras of codimension four and characteristic two, Comm. Algebra 15 (1987), no. 11, 2417–2429. MR 912779, DOI 10.1080/00927878708823544
- Gerson Levin, Poincaré series of modules over local rings, Proc. Amer. Math. Soc. 72 (1978), no. 1, 6–10. MR 503520, DOI 10.1090/S0002-9939-1978-0503520-2
- Claudia Miller, Complexity of tensor products of modules and a theorem of Huneke-Wiegand, Proc. Amer. Math. Soc. 126 (1998), no. 1, 53–60. MR 1415354, DOI 10.1090/S0002-9939-98-04017-9
- Satoru Okiyama, A local ring is CM if and only if its residue field has a CM syzygy, Tokyo J. Math. 14 (1991), no. 2, 489–500. MR 1138183, DOI 10.3836/tjm/1270130388
- Judith D. Sally, Tangent cones at Gorenstein singularities, Compositio Math. 40 (1980), no. 2, 167–175. MR 563540
- G. Sjödin, The Poincaré series of modules over a local Gorenstein ring with $\mathfrak {m}^3=0$, Mathematiska Institutionen, Stockholms Universitet, Preprint 2, 1979.
- Li-Chuan Sun, Growth of Betti numbers of modules over local rings of small embedding codimension or small linkage number, J. Pure Appl. Algebra 96 (1994), no. 1, 57–71. MR 1297441, DOI 10.1016/0022-4049(94)90087-6
- E. C. Titchmarsh, The theory of functions, Oxford University Press, London, 1939.
Bibliographic Information
- Liana M. Şega
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- Address at time of publication: Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, California 94720
- Email: lmsega@math.purdue.edu, lsega@msri.org
- Received by editor(s): November 6, 2001
- Received by editor(s) in revised form: March 5, 2002
- Published electronically: November 14, 2002
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2313-2323
- MSC (2000): Primary 13D07, 13H10; Secondary 13D40
- DOI: https://doi.org/10.1090/S0002-9939-02-06788-6
- MathSciNet review: 1974627