A note on Weyl’s theorem for operator matrices
HTML articles powered by AMS MathViewer
- by Slaviša V. Djordjević and Young Min Han
- Proc. Amer. Math. Soc. 131 (2003), 2543-2547
- DOI: https://doi.org/10.1090/S0002-9939-02-06808-9
- Published electronically: November 27, 2002
- PDF | Request permission
Abstract:
When $A\in \mathcal B(X)$ and $B\in \mathcal B(Y)$ are given we denote by $M_C$ an operator acting on the Banach space $X\oplus Y$ of the form \begin{equation*}M_{C}=\left (\begin {matrix}A&C 0&B\end{matrix} \right ),\ \ \text {where}\ \ C\in \mathcal B(Y,X). \end{equation*} In this note we examine the relation of Weyl’s theorem for $A\oplus B$ and $M_C$ through local spectral theory.References
- Pietro Aiena and Osmin Monsalve, Operators which do not have the single valued extension property, J. Math. Anal. Appl. 250 (2000), no. 2, 435–448. MR 1786074, DOI 10.1006/jmaa.2000.6966
- S.V. Djordjević, B.P. Duggal and Y.M. Han, The single valued extension property and Weyl’s theorem (preprint).
- Hong Ke Du and Pan Jin, Perturbation of spectrums of $2\times 2$ operator matrices, Proc. Amer. Math. Soc. 121 (1994), no. 3, 761–766. MR 1185266, DOI 10.1090/S0002-9939-1994-1185266-2
- James K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61–69. MR 374985
- Jin Kyu Han, Hong Youl Lee, and Woo Young Lee, Invertible completions of $2\times 2$ upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (2000), no. 1, 119–123. MR 1618686, DOI 10.1090/S0002-9939-99-04965-5
- Robin Harte, Invertibility and singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied Mathematics, vol. 109, Marcel Dekker, Inc., New York, 1988. MR 920812
- Robin Harte and Woo Young Lee, Another note on Weyl’s theorem, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115–2124. MR 1407492, DOI 10.1090/S0002-9947-97-01881-3
- M. Houimdi and H. Zguitti, Propriétés spectrales locales d’une matrice carrée des opérateurs, Acta Math. Vietnam. 25 (2000), no. 2, 137–144 (French, with English summary). MR 1770883
- J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3417–3424. MR 1342031, DOI 10.1090/S0002-9939-96-03449-1
- Kjeld B. Laursen and Michael M. Neumann, An introduction to local spectral theory, London Mathematical Society Monographs. New Series, vol. 20, The Clarendon Press, Oxford University Press, New York, 2000. MR 1747914
- Woo Young Lee, Weyl’s theorem for operator matrices, Integral Equations Operator Theory 32 (1998), no. 3, 319–331. MR 1652693, DOI 10.1007/BF01203773
- Woo Young Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2001), no. 1, 131–138. MR 1784020, DOI 10.1090/S0002-9939-00-05846-9
- Kirti K. Oberai, Spectral mapping theorem for essential spectra, Rev. Roumaine Math. Pures Appl. 25 (1980), no. 3, 365–373. MR 577924
Bibliographic Information
- Slaviša V. Djordjević
- Affiliation: University of Niš, Faculty of Science, P.O. Box 91, 18000 Niš, Yugoslavia
- Email: slavdj@pmf.pmf.ni.ac.yu
- Young Min Han
- Affiliation: Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, Iowa 52242-1419
- Email: yhan@math.uiowa.edu
- Received by editor(s): January 21, 2002
- Received by editor(s) in revised form: March 27, 2002
- Published electronically: November 27, 2002
- Communicated by: Joseph A. Ball
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2543-2547
- MSC (2000): Primary 47A10, 47A55
- DOI: https://doi.org/10.1090/S0002-9939-02-06808-9
- MathSciNet review: 1974653