BELL REPRESENTATIONS OF FINITELY CONNECTED
PLANAR DOMAINS

MOONJA JEONG AND MASAHIKO TANIGUCHI

(Communicated by Mei-Chi Shaw)

Abstract. In this paper, we solve a conjecture of S. Bell (1992) affirmatively. Actually, we prove that every non-degenerate n-connected planar domain Ω, where $n > 1$, is representable as $\Omega = \{|f| < 1\}$ with a suitable rational function f of degree n. This result is considered as a natural generalization of the classical Riemann mapping theorem for simply connected planar domains.

1. Introduction and the main theorem

Recently, S. Bell posed the following problem ([B1] and [B2]).

Problem 1.1. Can every non-degenerate n-connected planar domain with $n > 1$ be mapped biholomorphically onto a domain of the form

$$\left\{ \left| z + \sum_{k=1}^{n-1} \frac{a_k}{z - b_k} \right| < r \right\}$$

with complex numbers a_k and b_k, and a positive r?

Here and in the sequel, a non-degenerate n-connected planar domain is a subdomain Ω of the Riemann sphere $\hat{\mathbb{C}}$ such that $\hat{\mathbb{C}} - \Omega$ consists of exactly n connected components each of which contains more than one point. In this note, we solve this problem affirmatively. Actually, we give a proof of the following assertion.

Theorem 1.2. Every non-degenerate n-connected planar domain with $n > 1$ is mapped biholomorphically onto a domain defined by

$$\left\{ \left| z + \sum_{k=1}^{n-1} \frac{a_k}{z - b_k} \right| < 1 \right\}$$

with suitable complex numbers a_k and b_k.

Recall that every domain defined as in Theorem 1.2 has algebraic kernel functions. See Theorem 4.4 in [B1]. This is one of the reasons why we consider such domains.

Received by the editors March 15, 2002.

2000 Mathematics Subject Classification. Primary 32G10, 32G15; Secondary 30C20, 30F60.

Key words and phrases. Conformal representation, Ahlfors maps.

The second author was supported in part by Grant-in-Aid for Scientific Research (B)(2) 2001-19440047.

©2002 American Mathematical Society
Remark 1.3. It is well known (cf. for instance [1]) that the reduced Teichmüller space $T(\Omega)$ of a non-degenerate n-connected planar domain Ω can be identified with the Fricke space of a Fuchsian model G of Ω. Since G is a free real Möbius group with $n - 1$ hyperbolic generators, $T(\Omega)$ is real $(3n - 6)$-dimensional.

Such a Bell representation as in Theorem 1.2 contains $2n - 2$ complex, i.e. $4n - 4$ real, parameters. The reason why we need many more number of parameters in a Bell representation than Teichmüller parameters for $T(\Omega)$ is that every Bell representation of a domain is actually associated with an n-sheeted branched covering of the unit disk by Ω.

Remark 1.4. Such a space as $H_{0,n}$ consisting of all branched coverings of $\hat{\mathbb{C}}$ induced by rational functions of degree n with $n > 1$ is called a Hurwitz space ([N]). This space $H_{0,n}$ is parametrized by $2n - 2$ critical values (the images of critical points), and hence is complex $(2n - 2)$-dimensional.

Actually, we show that every Ahlfors map on Ω can be considered as the restriction of a rational function of degree n to a suitable domain which can be identified with Ω. On the other hand, the set of all branched coverings of $\hat{\mathbb{C}}$ induced from Bell representations can be considered as a subdomain of $H_{0,n}$. Thus to solve the following problem would be interesting.

Problem 1.5. Find the sublocus $A_{0,n}$ of $H_{0,n}$ which corresponds to the set of all Bell representations of non-degenerate n-connected planar domains such that the restrictions of the associated rational functions give Ahlfors maps.

The authors also thank the referee for his/her valuable suggestions and comments.

2. Proof of Theorem 1.2

First let a non-degenerate n-connected planar domain Ω be given. Then by using the classical Riemann mapping theorem n times if necessary, we can assume that the boundary of Ω consists of exactly n smooth simple closed curves. Fix a point a in Ω, and let f_a be the Ahlfors map associated to the pair (Ω, a). Here for the definition and properties of the Ahlfors maps, see for instance, [B]. In particular, f_a maps Ω properly and holomorphically onto the unit disk U. Moreover, f_a can be extended to a continuous map of the closure $\overline{\Omega}$ of Ω onto the closed unit disk so that every component γ_j of the boundary of Ω, where $j = 1, \cdots, n$, is mapped homeomorphically onto the unit circle.

Lemma 2.1. There is a compact Riemann surface R (without boundary) of genus 0 and a holomorphic injection ι of Ω into R such that

$$f_a \circ \iota^{-1}$$

can be extended to a meromorphic function, say F, on R.

Proof. Since there are only a finite number of zeros of f_a', there is a positive constant ρ such that $\rho < 1$ and that

$$D = \{\rho < |\zeta| < 1\},$$

where ζ is the complex coordinate on the target plane of the map f_a, and contains no critical values (i.e. no images of the zeros of f_a' by f_a). Hence every component
W_j, where $j = 1, \cdots, n$, of $f_a^{-1}(D)$ is mapped biholomorphically onto D by the restriction $f_a|_{W_j}$ of f_a to W_j.

Now we construct a compact Riemann surface R by using the Ahlfors map f_a to attach disks to the exterior of Ω along each boundary curve. More precisely, we consider the disjoint union R of Ω and n copies V_j ($j = 1, \cdots, n$) of

$$V = \{\rho < \|\zeta\|\} \cup \{\infty\}.$$

Identify every subdomain W_j of Ω with the subdomain D_j of V_j corresponding to D by the biholmorphic map corresponding to $f_a|_{W_j}$. Then the resulting set, which we denote by $R = f_a|_{W_j}$, has a natural complex structure induced from those on Ω and on every V_j, and hence is a Riemann surface. Here the natural inclusion map ι of Ω into R is a holomorphic injection, and using the complex coordinate ζ_j on the copy V_j corresponding to ζ on V, we have

$$f_a \circ \iota^{-1}(\zeta_j) = \zeta$$
on D_j by the definition.

Now, since topologically R is obtained from Ω by attaching a disk along each boundary curve of Ω, R is a simply connected compact Riemann surface without boundary, and hence in particular, is of genus 0. Also we can extend $F = f_a \circ \iota^{-1}$ to a meromorphic function on the whole R by setting $F(\zeta_j) = \zeta$ and $F(\infty) = \infty$ on the whole V_j for every j. \square

Here the following uniformization theorem (which is also called the generalized Riemann mapping theorem) is classical and well-known. As references, we cite for instance [FK] and [IT].

Proposition 2.2 (Klein, Koebe and Poincaré). Every simply connected Riemann surface is mapped biholomorphically onto one of

- the unit disk U,
- the complex plane \mathbb{C}, and
- the Riemann sphere $\hat{\mathbb{C}}$.

Corollary 2.3. There is a biholomorphic map h of the above Riemann surface R onto the Riemann sphere $\hat{\mathbb{C}}$, and hence $F \circ h^{-1}$ is a rational function.

Proof. Since R is compact, R is mapped by a biholomorphic map h onto the Riemann sphere. Set $f = F \circ h^{-1}$. Then f is meromorphic on the whole $\hat{\mathbb{C}}$, which implies that f is a rational function. \square

Here and in the sequel, we may assume that

$$f(\infty) = \infty$$

by applying to f the pre-composition of a Möbius transformation S which sends ∞ to a pole of f, i.e. by replacing h by $S^{-1} \circ h$, if necessary.

Lemma 2.4. Let w be the complex variable of the above rational function f. Then f has the following partial fraction decomposition:

$$f(w) = Cw + D + \sum_{k=1}^{n-1} \frac{A_k}{w - B_k}.$$

Here A_k, B_k, C and D are complex constants, every A_k and C are non-zero, and $\{B_k\}$ are mutually distinct.
Proof. Since \(f \) has exactly \(n \) simple poles, as is seen from the construction, and one of them is \(\infty \) by the above assumption, \(f \) is of degree exactly \(n \) and has \(n - 1 \) finite, mutually distinct, simple poles, say \(B_1, \ldots, B_{n-1} \). Hence we can write \(f(w) \) as

\[
f(w) = \frac{P(w)}{Q(w)}
\]

with polynomials \(P(w) \) of degree exactly \(n \) and

\[
Q(w) = (w - B_1) \cdots (w - B_{n-1}).
\]

Thus it is easy to see that the partial fraction decomposition of \(f \) is as claimed. \(\square \)

Proof of Theorem 1.2. We replace the complex variable \(w \) of \(f \) by

\[
z = T(w) = Cw + D
\]

by applying to \(f \) the precomposition by an affine transformation \(T \). Further set

\[
a_k = CA_k, \quad b_k = CB_k + D
\]

for every \(k \). Then we conclude that

\[
f \circ T^{-1}(z) = z + \sum_{k=1}^{n-1} \frac{a_k}{z - b_k}.
\]

Thus the Bell representation

\[
\left\{ \left| z + \sum_{k=1}^{n-1} \frac{a_k}{z - b_k} \right| < 1 \right\}
\]

is the subdomain

\[
\{ |f \circ T^{-1}(z)| < 1 \} = \{ |F \circ h^{-1} \circ T^{-1}(z)| < 1 \} = (T \circ h \circ \iota)(\Omega)
\]

of \(\hat{C} \), which is mapped biholomorphically onto \(\Omega \) by the holomorphic injection \((T \circ h \circ \iota)^{-1}\). \(\square \)

References

