Infinite approximate Peano derivatives
HTML articles powered by AMS MathViewer
- by Hajrudin Fejzić
- Proc. Amer. Math. Soc. 131 (2003), 2527-2536
- DOI: https://doi.org/10.1090/S0002-9939-02-06828-4
- Published electronically: October 15, 2002
- PDF | Request permission
Abstract:
In this paper we introduce approximate Peano derivatives with infinite values allowed, and we show that these derivatives are Baire one, and possess the Darboux and Denjoy-Clarkson properties. Also we show that if they are bounded from above or below on an interval, then the corresponding ordinary derivatives exist and equal the approximate Peano derivatives.References
- S. J. Agronsky, R. Biskner, A. M. Bruckner, and J. Mařík, Representations of functions by derivatives, Trans. Amer. Math. Soc. 263 (1981), no. 2, 493–500. MR 594421, DOI 10.1090/S0002-9947-1981-0594421-7
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8
- H. Fejzić, The Peano Derivatives, Ph.D. Dissertation, Michigan State University (1992).
- H. Fejzić, On approximate Peano derivatives, Acta Math. Hungar. 65 (1994), no. 4, 319–332. MR 1281442, DOI 10.1007/BF01876034
- Hajrudin Fejzić, Jan Mařík, and Clifford E. Weil, Extending Peano derivatives, Math. Bohem. 119 (1994), no. 4, 387–406. MR 1316592
- Hajrudin Fejzić and Dan Rinne, Peano path derivatives, Proc. Amer. Math. Soc. 125 (1997), no. 9, 2651–2656. MR 1396976, DOI 10.1090/S0002-9939-97-03878-1
- M. Laczkovich, D. Preiss, and C. Weil, On unilateral and bilateral $n$th Peano derivatives, Proc. Amer. Math. Soc. 99 (1987), no. 1, 129–134. MR 866442, DOI 10.1090/S0002-9939-1987-0866442-9
- Cheng Ming Lee, On the approximate Peano derivatives, J. London Math. Soc. (2) 12 (1975/76), no. 4, 475–478. MR 399378, DOI 10.1112/jlms/s2-12.4.475
- J. S. Lipiński, Sur la discontinuité approximative et la dérivée approximative, Colloq. Math. 10 (1963), 103–109 (French). MR 150245, DOI 10.4064/cm-10-1-106-109
- Ladislav Mišík, Bemerkungen über approximative Ableitung, Mat. Časopis Sloven. Akad. Vied 19 (1969), 283–291 (German, with English summary). MR 302834
- David Preiss, Approximate derivatives and Baire classes, Czechoslovak Math. J. 21(96) (1971), 373–382. MR 286951
- S. Verblunsky, On the Peano derivatives, Proc. London Math. Soc. (3) 22 (1971), 313–324. MR 285678, DOI 10.1112/plms/s3-22.2.313
- A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge (1991).
Bibliographic Information
- Hajrudin Fejzić
- Affiliation: Department of Mathematics, California State University, San Bernardino, California 92407
- Email: hfejzic@csusb.edu
- Received by editor(s): January 5, 2001
- Received by editor(s) in revised form: March 27, 2002
- Published electronically: October 15, 2002
- Communicated by: David Preiss
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2527-2536
- MSC (2000): Primary 26A24; Secondary 26A21
- DOI: https://doi.org/10.1090/S0002-9939-02-06828-4
- MathSciNet review: 1974651