Some remarks on spreading models and mixed Tsirelson spaces
HTML articles powered by AMS MathViewer
- by A. Manoussakis
- Proc. Amer. Math. Soc. 131 (2003), 2515-2525
- DOI: https://doi.org/10.1090/S0002-9939-02-06832-6
- Published electronically: November 14, 2002
- PDF | Request permission
Abstract:
We prove that if a Banach space with a bimonotone shrinking basis does not contain $\ell _{1}^{\omega }$ spreading models but every block sequence of the basis contains a further block sequence which is a $c-\ell _{1}^{n}$ spreading model for every $n\in \mathbb {N}$, then every subspace has a further subspace which is arbitrarily distortable. We also prove that a mixed Tsirelson space $T[(\mathcal {S}_{n},\theta _{n})_{n}]$, such that $\theta _{n}\searrow 0$, does not contain $\ell _{1}^{\omega 2}$ spreading models.References
- Dale E. Alspach and Spiros Argyros, Complexity of weakly null sequences, Dissertationes Math. (Rozprawy Mat.) 321 (1992), 44. MR 1191024
- G. Androulakis and E. Odell, Distorting mixed Tsirelson spaces, Israel J. Math. 109 (1999), 125–149. MR 1679593, DOI 10.1007/BF02775031
- S. A. Argyros and I. Deliyanni, Examples of asymptotic $l_1$ Banach spaces, Trans. Amer. Math. Soc. 349 (1997), no. 3, 973–995. MR 1390965, DOI 10.1090/S0002-9947-97-01774-1
- S. A. Argyros, I. Deliyanni, D. N. Kutzarova, and A. Manoussakis, Modified mixed Tsirelson spaces, J. Funct. Anal. 159 (1998), no. 1, 43–109. MR 1654174, DOI 10.1006/jfan.1998.3310
- S.A. Argyros, I. Deliyanni, A. Manoussakis, Distortion and Spreading models in Modified mixed Tsirelson spaces, preprint.
- S. A. Argyros and I. Gasparis, Unconditional structures of weakly null sequences, Trans. Amer. Math. Soc. 353 (2001), no. 5, 2019–2058. MR 1813606, DOI 10.1090/S0002-9947-01-02711-8
- S. A. Argyros, S. Mercourakis, and A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, Israel J. Math. 107 (1998), 157–193. MR 1658551, DOI 10.1007/BF02764008
- S.A. Argyros, A. Tolias, Methods in the Theory of Hereditarily Indecomposable Banach Spaces, preprint.
- I. Gasparis, A Continuum of totally incomparable Hereditarily Indecomposable Banach spaces, to appear in Studia Math.
- I. Gasparis, Strictly Singular non-compact operators on Hereditarily Indecomposable Banach spaces, to appear in Proc. Amer. Math. Soc.
- Denka Kutzarova and Pei-Kee Lin, Remarks about Schlumprecht space, Proc. Amer. Math. Soc. 128 (2000), no. 7, 2059–2068. MR 1654081, DOI 10.1090/S0002-9939-99-05248-X
- A. Manoussakis, On the structure of a certain class of mixed Tsirelson spaces, Positivity 5 (2001), no. 3, 193–238. MR 1836747, DOI 10.1023/A:1011456204116
- E. Odell and Th. Schlumprecht, On the richness of the set of $p$’s in Krivine’s theorem, Geometric aspects of functional analysis (Israel, 1992–1994) Oper. Theory Adv. Appl., vol. 77, Birkhäuser, Basel, 1995, pp. 177–198. MR 1353459
- E. Odell and Th. Schlumprecht, A problem on spreading models, J. Funct. Anal. 153 (1998), no. 2, 249–261. MR 1614578, DOI 10.1006/jfan.1997.3191
- E.Odell, N. Tomczak-Jaegermann, R.Wagner, Proximity to $\ell _{1}$ and distortion in asymptotic $\ell _{1}$ spaces, Journal of Funct. Analysis 150 (1997), 101-145.
- Thomas Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), no. 1-2, 81–95. MR 1177333, DOI 10.1007/BF02782845
- B.Tsirelson, Not every Banach space contains $\ell _{p}$ or $c_0$, Funct. Anal. Appl. 8 (1974), 138-141.
Bibliographic Information
- A. Manoussakis
- Affiliation: Department of Sciences, Technical University of Crete, 73100 Chania, Greece
- Email: amanouss@science.tuc.gr
- Received by editor(s): November 13, 2001
- Received by editor(s) in revised form: March 24, 2002
- Published electronically: November 14, 2002
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2515-2525
- MSC (2000): Primary 46B03, 46B20, 46B45
- DOI: https://doi.org/10.1090/S0002-9939-02-06832-6
- MathSciNet review: 1974650