On Schwarz type inequalities
HTML articles powered by AMS MathViewer
- by K. Tanahashi, A. Uchiyama and M. Uchiyama
- Proc. Amer. Math. Soc. 131 (2003), 2549-2552
- DOI: https://doi.org/10.1090/S0002-9939-02-06889-2
- Published electronically: November 27, 2002
- PDF | Request permission
Abstract:
We show Schwarz type inequalities and consider their converses. A continuous function $f : [0, \infty ) \rightarrow [0, \infty )$ is said to be semi-operator monotone on $(a,b)$ if $\{f( t^{\frac {1}{2}} ) \}^{2}$ is operator monotone on $(a^{2},b^{2})$. Let $T$ be a bounded linear operator on a complex Hilbert space ${\mathcal H}$ and $T = U \vert T \vert$ be the polar decomposition of $T$. Let $0 \leq A, B \in B( {\mathcal H})$ and $\Vert Tx \Vert \leq \Vert Ax\Vert , \Vert T^{*} y \Vert \leq \Vert By \Vert$ for $x, y \in {\mathcal H}$. (1) If a non-zero function $f$ is semi-operator monotone on $(0, \infty )$, then $\vert \langle Tx, y \rangle \vert \leq \Vert f(A) x \Vert \Vert g(B) y \Vert$ for $x, y \in {\mathcal H}$, where $g(t) = t/f(t)$. (2) If $f, g$ are semi-operator monotone on $(0, \infty )$, then $\vert \langle U f(\vert T \vert )g(\vert T \vert )x, y \rangle \vert \leq \Vert f(A) x \Vert \Vert g(B) y \Vert$ for $x, y \in {\mathcal H}$. Also, we show converses of these inequalities, which imply that semi-operator monotonicity is necessary.References
- Jaspal Singh Aujla, Perturbation bounds for certain operator functions, Math. Inequal. Appl. 4 (2001), no. 4, 609–617. MR 1859665, DOI 10.7153/mia-04-53
- Junichi Fujii and Masatoshi Fujii, An analogue to Hansen’s theory of generalized Löwner’s functions, Math. Japon. 35 (1990), no. 2, 327–330. MR 1049097
- Takayuki Furuta, An extension of the Heinz-Kato theorem, Proc. Amer. Math. Soc. 120 (1994), no. 3, 785–787. MR 1169027, DOI 10.1090/S0002-9939-1994-1169027-6
- E. Hansen and G. K. Pedersen, Jensen’s inequality for operators and Löwer’s theorem, Math. Ann., 258 (1982), 229–241.
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Mitsuru Uchiyama, Further extension of Heinz-Kato-Furuta inequality, Proc. Amer. Math. Soc. 127 (1999), no. 10, 2899–2904. MR 1654068, DOI 10.1090/S0002-9939-99-05266-1
Bibliographic Information
- K. Tanahashi
- Affiliation: Department of Mathematics, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
- Email: tanahasi@tohoku-pharm.ac.jp
- A. Uchiyama
- Affiliation: Mathematical Institute, Tohoku University, Sendai 980-8578, Japan
- Email: uchiyama@math.tohoku.ac.jp
- M. Uchiyama
- Affiliation: Department of Mathematics, Fukuoka University of Education, Munakata 811-4192, Japan
- MR Author ID: 198919
- Email: uchiyama@fukuoka-edu.ac.jp
- Received by editor(s): December 17, 2001
- Received by editor(s) in revised form: March 29, 2002
- Published electronically: November 27, 2002
- Additional Notes: This research was supported by Grant-in-Aid Research No. 12640187.
- Communicated by: Joseph A. Ball
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2549-2552
- MSC (2000): Primary 47A30, 47A63, 47B15
- DOI: https://doi.org/10.1090/S0002-9939-02-06889-2
- MathSciNet review: 1974654