On a class of sublinear quasilinear elliptic problems
HTML articles powered by AMS MathViewer
- by D. D. Hai
- Proc. Amer. Math. Soc. 131 (2003), 2409-2414
- DOI: https://doi.org/10.1090/S0002-9939-03-06874-6
- Published electronically: January 15, 2003
- PDF | Request permission
Abstract:
We establish existence and multiplicity of positive solutions to the quasilinear boundary value problem \begin{align*} \operatorname {div}(|\nabla u|^{p-2}\nabla u) &= -\lambda f(u)\quad \text {in $\Omega $},\\ u &= 0\quad \text {on$\partial \Omega $}, \end{align*} where $\Omega$ is a bounded domain in $R^{n}$ with smooth boundary $\partial \Omega$, $f:[0,\infty )\rightarrow R$ is continuous and p-sublinear at $\infty ,$ and $\lambda$ is a large parameter.References
- Howard Levi, On the values assumed by polynomials, Bull. Amer. Math. Soc. 45 (1939), 570–575. MR 54, DOI 10.1090/S0002-9904-1939-07038-9
- Pavel Drábek and Jesús Hernández, Existence and uniqueness of positive solutions for some quasilinear elliptic problems, Nonlinear Anal. 44 (2001), no. 2, Ser. A: Theory Methods, 189–204. MR 1816658, DOI 10.1016/S0362-546X(99)00258-8
- Pavel Drábek, Alois Kufner, and Francesco Nicolosi, Quasilinear elliptic equations with degenerations and singularities, De Gruyter Series in Nonlinear Analysis and Applications, vol. 5, Walter de Gruyter & Co., Berlin, 1997. MR 1460729, DOI 10.1515/9783110804775
- Zong Ming Guo, Some existence and multiplicity results for a class of quasilinear elliptic eigenvalue problems, Nonlinear Anal. 18 (1992), no. 10, 957–971. MR 1166534, DOI 10.1016/0362-546X(92)90132-X
- Zong Ming Guo and J. R. L. Webb, Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 1, 189–198. MR 1272439, DOI 10.1017/S0308210500029280
- D. D. Hai and R. Shivaji, Existence and uniqueness for a class of quasilinear elliptic boundary value problems (submitted)
- Gary M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), no. 11, 1203–1219. MR 969499, DOI 10.1016/0362-546X(88)90053-3
- Shigeru Sakaguchi, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 3, 403–421 (1988). MR 951227
- Peter Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126–150. MR 727034, DOI 10.1016/0022-0396(84)90105-0
- T. Oden, Qualitative Methods in Nonlinear Mechanics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1986.
- J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), no. 3, 191–202. MR 768629, DOI 10.1007/BF01449041
Bibliographic Information
- D. D. Hai
- Affiliation: Department of Mathematics, Mississippi State University, Mississippi State, Mississippi 39762
- Email: dang@ra.msstate.edu
- Received by editor(s): March 7, 2002
- Published electronically: January 15, 2003
- Communicated by: David S. Tartakoff
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2409-2414
- MSC (2000): Primary 35J25, 35J70
- DOI: https://doi.org/10.1090/S0002-9939-03-06874-6
- MathSciNet review: 1974638