GRAPHS THAT ARE NOT COMPLETE PLURIPOLAR

ARMEN EDIGARIAN AND JAN WIEGERINCK

(Communicated by Mei-Chi Shaw)

Abstract. Let $D_1 \subset D_2$ be domains in \mathbb{C}. Under very mild conditions on D_2 we show that there exist holomorphic functions f, defined on D_1 with the property that f is nowhere extendible across ∂D_1, while the graph of f over D_1 is not complete pluripolar in $D_2 \times \mathbb{C}$. This refutes a conjecture of Levenberg, Martin and Poletsky (1992).

1. Introduction

Levenberg, Martin and Poletsky [6] have conjectured that if f is a holomorphic function, which is defined on its maximal domain of existence $D \subset \mathbb{C}$, then the graph

$$\Gamma_f = \{(z, f(z)) : z \in D\}$$

of f over D is a complete pluripolar subset of \mathbb{C}^2. I.e., there exists a plurisubharmonic function on \mathbb{C}^2 such that it equals $-\infty$ precisely on Γ_f (see e.g. [4]). They gave support for this conjecture in the sense that they could prove it for some lacunary series. More support was provided by Levenberg and Poletsky [7] and by the second author [9, 10, 11]. Nevertheless, in this paper we show that the conjecture is false.

In fact we have

Theorem 1.1. Let $D_1 \subset D_2$ be domains in \mathbb{C}. Assume that $D_2 \setminus D_1$ has a density point in D_2. Then there exists a holomorphic function f with domain of existence D_1 such that the graph Γ_f of f over D_1 is not complete pluripolar in $D_2 \times \mathbb{C}$.

In case $D_2 \setminus D_1$ has no density point in D_2, it is known that Γ_f is complete pluripolar in $D_2 \times \mathbb{C}$ (see [10]). If we take in Theorem 1.1 for D_1 the unit disc \mathbb{D} and for D_2 the whole plane \mathbb{C}, we obtain the following corollary.

Corollary 1.2. There exists a holomorphic function f defined on \mathbb{D}, which does not extend holomorphically across $\partial \mathbb{D}$, such that Γ_f is not complete pluripolar in \mathbb{C}^2.

©2003 American Mathematical Society
Theorem then states that such a function can even be smooth up to the boundary of D.

The first-named author thanks Marek Jarnicki, Witold Jarnicki, and Peter Pflug for very helpful discussions.

2. Graphs with non-trivial pluripolar hull

The pluripolar hull of a pluripolar set $K \subset \Omega$ is the set

$$K_\Omega^* = \{ z \in \Omega : u|_K = -\infty, u \in PSH(\Omega) \Rightarrow u(z) = -\infty \}.$$

By $\omega(z, E, D)$ we denote as usual the harmonic measure of a subset E of the boundary of a domain D in \mathbb{C} at the point z in D (see e.g. [8]).

Let $A = \{ a_n \}_{n=1}^\infty$ be a countable dense subset of ∂D. Under the assumptions of Theorem 1.1, there exists an $a \in (\partial D) \cap D_2$ such that $a \notin A \{ a \}$. We may assume that $a \notin A$. Our function f will be of the form

$$f(z) = \sum_{j=1}^{\infty} \frac{c_j}{z - a_j}.$$

We will choose c_n very rapidly decreasing to 0. In particular,

$$\sum_{j=1}^{\infty} |c_j| < +\infty,$$

so the limit in (2.1) exists and is a holomorphic function on D_1.

Moreover, we will choose c_n such that $\sum_{n=1}^{\infty} \frac{|c_j|}{|a - a_j|} < +\infty$. Hence, the series (2.1) will converge at $z = a$. We will denote its limit by $f(a)$. We will prove a version of Theorem 1.1 that elaborates on (2.1). However, no statement about extendibility is made at this point.

Theorem 2.1. Let $D_1 \subset D_2$ be domains in \mathbb{C}, such that $D_2 \setminus D_1$ has a density point in D_2. There exists a sequence $\{ \rho_n \}_{n=1}^{\infty}$ of positive numbers such that for any sequence of complex numbers $\{ c_n \}_{n=1}^{\infty}$ with $|c_n| \leq R_n$ we have $(a, f(a)) \in (\Gamma_f)^*_D \times \mathbb{C}$, where f is given by (2.1). Here Γ_f is the graph of f over D_1.

Proof. We may assume that $a = 0$. For $b \in \mathbb{C}$ and $r > 0$ we set $D(b, r) = \{ z \in \mathbb{C} : |z - b| < r \}$, $D_r = D(0, r)$ and $D = D_1$, the unit disc. Put

$$\pi_n^k(z) = e^{\frac{2\pi i k}{n}}, \quad z \in \mathbb{C}, \quad k, n \in \mathbb{N},$$

and

$$B = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{n} \pi_n^k(A).$$

Note that $0 \notin B$ and that B is also countable (and therefore thin at 0). By Corollary 4.8.3 in [4], there exists an open set $U \supset B$ such that U is thin at 0.

Step 1. We construct a sequence of radii $\{ \rho_n \}_{n=1}^{\infty}$ with special properties, the main one being that $\bigcup_{n=1}^{n} \bigcup_{k=1}^{n} \pi_n^k(D(a_n, \rho_n))$ is thin at 0.

It is a corollary of Wiener’s criterion (see [8], Theorem 5.4.2) that there exists a sequence $r_n \to 0$ such that

$$\partial D_{r_n} \cap U = \emptyset, \quad n \in \mathbb{N}.$$
Since U is thin at 0, there exists a subharmonic function u on \mathbb{C} such that

$$\limsup_{U \ni z \to 0} u(z) = -\infty < u(0)$$

(see e.g. Proposition 4.8.2 in [4]). Moreover, by scaling and adding a constant, we can assume that $u(0) = -\frac{1}{2}$ and $u < 0$ on \mathbb{D}. By \((2.3)\) there exists a $\rho > 0$ such that $\overline{D}_\rho \subset D_2$, $\partial D_\rho \cap D_1 = \emptyset$, $\partial D_\rho \cap \emptyset = \emptyset$, and $u \leq -1$ on $U \cap D_\rho$ (take $\rho = r_n$ with sufficiently big n).

Let $J \subset \partial D_\rho \cap D_1$ be a closed arc. We can assume that

$$J = \{ e^{i\theta} r : \frac{2\pi k_0}{n_0} \leq \theta \leq \frac{2\pi (k_0 + 1)}{n_0} \}$$

for some $k_0, n_0 \in \mathbb{N}$.

Now we choose a sequence of positive numbers $\rho_n \in (0,1), n \in \mathbb{N}$, in the following way:

1. Let $0 < \rho_1 < 1$ be such that
 \begin{enumerate}
 \item[(a)] $\bigcup_{k=1}^{n_0} \pi^k_{n_0} (\mathbb{D}(a_1, \rho_1)) \subset U$;
 \item[(b)] $\mathbb{D}_\rho \setminus \bigcup_{k=1}^{n_0} \pi^k_{n_0} (\mathbb{D}(a_1, \rho_1))$ is connected.
 \end{enumerate}
2. Assume that $\rho_1, \ldots, \rho_{n-1}$ are chosen. Choose $0 < \rho_n < 1$ such that
 \begin{enumerate}
 \item[(a)] $\bigcup_{k=1}^{n_0} \pi^k_{n_0} (\mathbb{D}(a_n, \rho_n)) \subset U$;
 \item[(b)] $\mathbb{D}_\rho \setminus \bigcup_{k=1}^{n_0} \pi^k_{n_0} (\mathbb{D}(a_n, \rho_n))$ is connected.
 \end{enumerate}

Put $Y_n = \bigcup_{j=1}^{n_0} \pi^k_{n_0} (\mathbb{D}(a_j, \rho_j))$. So, $Y_n \subset U$ is a closed set such that $\mathbb{D}_\rho \setminus Y_n$ is a domain and $\partial \mathbb{D}_\rho \cap Y_n = \emptyset$ for any $n \in \mathbb{N}$.

Step 2. We want to show that

\begin{equation}
(2.4) \quad \omega(0, \partial \mathbb{D}_\rho, \mathbb{D}_\rho \setminus Y_n) \geq \frac{1}{2}, \quad n \in \mathbb{N}.
\end{equation}

Fix $n \in \mathbb{N}$. Put $v_n(z) = -\omega(z, \partial \mathbb{D}_\rho, \mathbb{D}_\rho \setminus Y_n) + u(z)$. It suffices to show that

\begin{equation}
(2.5) \quad v_n \leq -1 \quad \text{on } \mathbb{D}_\rho \setminus Y_n.
\end{equation}

Observe that $-\omega(\cdot, \partial \mathbb{D}_\rho, \mathbb{D}_\rho \setminus Y_n) \leq 0$ and $u(\cdot) \leq 0$ on $\mathbb{D}_\rho \setminus Y_n$. Moreover, we have

$$\limsup_{z \to \partial \mathbb{D}_\rho, \mathbb{D}_\rho \setminus Y_n} -\omega(z, \partial \mathbb{D}_\rho, \mathbb{D}_\rho \setminus Y_n) \leq -1 \text{ and } \limsup_{z \to Y_n} u(z) \leq -1.$$ So, from the maximum principle for the subharmonic function v_n we get \((2.5)\) and, therefore, \((2.4)\).

Step 3. Here we want show that

\begin{equation}
(2.6) \quad \omega(0, J, \mathbb{D}_\rho \setminus \bigcup_{j=1}^{n_0} \mathbb{D}(a_j, \frac{\rho_j}{2})) \geq \frac{1}{2n_0}, \quad n \in \mathbb{N}.
\end{equation}

Put

$$w_n(z) = \omega(z, \partial \mathbb{D}_\rho, \mathbb{D}_\rho \setminus Y_n) - \sum_{k=1}^{n_0} \omega(z, \pi^k_{n_0}(J), \mathbb{D}_\rho \setminus Y_n).$$

Note that $\bigcup_{k=1}^{n_0} \pi^k_{n_0}(J) = \partial \mathbb{D}_\rho$. Again from the maximum principle we obtain that $w_n \leq 0$ on $\mathbb{D}_\rho \setminus Y_n$, $n \in \mathbb{N}$.

Because $\pi^k_{n_0}(\mathbb{D}_\rho \setminus Y_n) = \mathbb{D}_\rho \setminus Y_n$, for any $k, n \in \mathbb{N}$, we find

$$\omega(0, \pi^k_{n_0}(J), \mathbb{D}_\rho \setminus Y_n) = \omega(0, J, \mathbb{D}_\rho \setminus Y_n), \quad k \in \mathbb{N}.$$
Hence,
\[\omega(0, J, D_\rho \setminus \bigcup_{j=1}^{n} \overline{D}(a_j, \frac{\rho_j}{2})) \geq \omega(0, J, D_\rho \setminus Y_n) \geq \frac{1}{2n_0}, \quad n \in \mathbb{N}. \]

Step 4. Let \(\{ R_n \}_{n=1}^{\infty} \) be a sequence of positive numbers such that \(C_1 := \sum_{n=1}^{\infty} \frac{R_n}{n} < +\infty \) and, therefore, \(\sum_{n=1}^{\infty} R_n < C_1 \) (take e.g. \(R_n = \frac{1}{n^2} \)). Consider any sequence of complex numbers \(\{ c_n \}_{n=1}^{\infty} \) with \(|c_n| \leq R_n \) and let \(f \) be defined by (2.1).

Put
\[f_n(z) = \sum_{j=1}^{n} \frac{c_j}{z - a_j} - \sum_{j=n+1}^{\infty} \frac{c_j}{a_j}, \quad n \in \mathbb{N}. \]

Then \(|f_n(z)| \leq 2C_1 \) for every \(z \in \mathbb{D}_\rho \setminus \bigcup_{j=1}^{n} \overline{D}(a_j, \frac{\rho_j}{2}) \) and all \(n \).

Let \(h \in \text{PSH}(D_2 \times \mathbb{C}) \) have the property that \(h(z, f(z)) = -\infty, \quad z \in D_1. \)

The function \(s_n \) defined on \(D_2 \setminus \{ a_1, \ldots, a_n \} \) by \(s_n(z) := h(z, f_n(z)) \) is subharmonic. Let \(A_n := \sup_{z \in \mathbb{H}} s_n(z) \) and let \(C_2 := \sup_{z \in \mathbb{D}_\rho, |w| \leq 2C_1} h(z, w). \) Then \(A_n \to \sup_{z \in \mathbb{D}_\rho} h(z, f(z)) = -\infty \) as \(n \to \infty. \)

From the two-constant theorem (see e.g. [8], Theorem 4.3.7) we infer
\[\frac{C_2 - s_n(0)}{C_2 - A_n} \geq \omega(0, J, D_\rho \setminus \bigcup_{j=1}^{n} \overline{D}(a_j, \frac{\rho_j}{2})) \geq \frac{1}{2n_0}, \quad n \in \mathbb{N}. \]

Letting \(n \to \infty \), we conclude that \(h(0, f(0)) = s_n(0) = -\infty \) and therefore \((0, f(0)) \in (\Gamma f)_D \times \mathbb{C}. \)

For the proof of Theorem 1.1 we need to know that the function defined by (2.1) is not extendible across the boundary of \(D_1 \). This will be done in the next section.

3. Non-extendible sums

Without additional conditions on \(a_n \) and \(c_n \), a function defined by (2.1) may well extend holomorphically beyond the boundary of \(D_1 \)—think of the Lambert-type series \(\sum_{n=1}^{\infty} c_n \frac{z^n}{n^2}; \) cf. [8]. It may even yield \(0 \) on \(D_1 \); cf. [1]. We will see that a suitable choice of \(a_n \) and \(c_n \) prevents this from happening. We are grateful to Marek Jarnicki and Peter Pflug who suggested the idea of the proof of the next lemma.

Lemma 3.1. Let \(D \) be a domain in \(\mathbb{C} \). Then there exist a dense subset \(A = \{ a_n \}_{n=1}^{\infty} \) of \(\partial D \) and a sequence \(\{ R_n \}_{n=1}^{\infty} \) of positive numbers such that for any sequence of complex numbers \(\{ c_n \}_{n=1}^{\infty} \) with \(0 < |c_n| \leq R_n \) the holomorphic function \(f \) given by (2.1) is not holomorphically extendible across \(\partial D \).

Proof. Let \(B = \{ b_n \}_{n=1}^{\infty} \) be a dense subset of \(D \) (take e.g. \(U = D \cap \mathbb{Q}^2 \)). For any \(b_n \in B \) there exists a point \(a \in \partial D \) such that \(\text{dist}(b_n, \partial D) = |b_n - a| \). We denote by \(a_n \) one of them. Set \(A = \{ a_n \}_{n=1}^{\infty} \). Note that \(A \) is a dense subset of \(\partial D \). Taking subsequence of \(\{ a_n \}_{n=1}^{\infty} \) we may assume that \(a_i \neq a_j, \ i \neq j \).

Fix \(n \in \mathbb{N} \). Let \(B_n = \{ z \in D : \text{dist}(z, \partial D) = |z - a_n| \} \subset D. \) Note that \(B_n \cup \{ a_n \} \) is a closed set on the plane and \(B = \bigcup_{n=1}^{\infty} B_n \) is dense in \(D \) (because \(B \supset B_n \)). Moreover, if \(z_0 \in B_n \), then the open segment with the ends at the points \(z_0 \) and \(a_n \) is contained in \(B_n \).
For any \(j \in \mathbb{N} \) we put \(\epsilon_{nj} = \text{dist}(a_j, B_n) \). Since \(a_j \notin B_n \) for \(j \neq n \), we see that \(\epsilon_{nj} > 0 \) for \(j \neq n \).

Put

\[
R_j = \frac{\min\{\epsilon_{1j}, \ldots, \epsilon_{(j-1)j}\}}{j^2}, \quad j \in \mathbb{N}.
\]

For any \(n \in \mathbb{N} \) and any \(j > n \) we have \(R_j \leq \frac{\epsilon_{nj}}{j} \) and therefore

\[
\sum_{j \neq n} R_j \frac{|z - a_j|}{|z - a_n|} \leq \sum_{j \neq n} \frac{R_j}{\epsilon_{nj}} < +\infty, \quad z \in B_n.
\]

Take a sequence of complex numbers \(\{c_n\}_{n=1}^\infty \) with \(0 < |c_n| \leq R_n \). Then for a fixed \(n \in \mathbb{N} \) we have

\[
(3.1) \quad \liminf_{B_n, \exists z \rightarrow a_n} |(z - a_n) f(z)| \geq |c_n| - \lim_{B_n, \exists z \rightarrow a_n} |z - a_n| \cdot \limsup_{B_n, \exists z \rightarrow a_n} \sum_{j \neq n} \frac{|c_j|}{|z - a_j|} = |c_n| > 0.
\]

Observe that for any \(n \in \mathbb{N} \) the Taylor series at any point of \(z_0 \in B_n \) has a radius of convergence equal to \(\text{dist}(z_0, \partial D) \) (because of (3.1) and \(|z_0 - a_n| = \text{dist}(z_0, \partial D) \)).

Hence, by Lemma 1.7.5 from [3] we see that \(D \) is the domain of existence of \(f \).

Proof of Theorem 3.1. If a set \(E \subset \Omega \) is complete pluripolar in a domain \(\Omega \), then \(E^*_\Omega = E \). By Lemma 3.1 and Theorem 2.1 there exists a holomorphic function \(f \) on \(D_1 \) for which \(D_1 \) is a domain of existence and \((\Gamma f)^{1,2}_E \neq \Gamma f \). Hence, \(\Gamma f \) is not complete pluripolar in \(D_2 \times \mathbb{C} \).

Theorem 3.2. There exists a sequence \(\{a_n\}_{n=1}^\infty \subset \mathbb{C} \setminus \overline{D} \) and a sequence \(\{c_n\}_{n=1}^\infty \) such that the function \(f \) defined by (2.1) is \(C^\infty \) on \(\overline{D} \) and is nowhere extendible over the boundary of \(D \), while \(\Gamma f \) is not complete pluripolar in \(\mathbb{C}^2 \).

Proof. Let \(r_j = 1 + 1/(j + 1) \). The sequence \(a_n \) is formed by

\[
a_{2^j+k} = r_j e^{2\pi i k/2^j}, \quad k = 0, \ldots, 2^j - 1, \quad j = 0, 1, \ldots.
\]

The proof of Theorem 2.1 provides us with a sequence \(\{R_n\} \) such that for every sequence \(\{c_n\} \) with \(|c_n| < R_n \) the series (2.1) represents a function on \(D \), the graph of which is not complete pluripolar. Assembling all \(a_n \in C(0, r_j) \) we find that there exists a sequence \(\{R_j^*\} \) such that for every choice of \(0 < \epsilon < R_j^* \) the function \(f_\epsilon \) on \(\overline{D} \) defined by

\[
(3.2) \quad f_\epsilon(z) = \sum_{j=0}^\infty \frac{\epsilon_j}{r_j^* - z^{2^j}}
\]

has a graph that is not complete pluripolar.

We observe that independent of the choice of \(\epsilon_j \),

\[
\sum_{j=1}^n \frac{\epsilon_j}{r_j^* - z^{2^j}} = \sum_{k=1}^\infty d_{n,k} z^k
\]

is holomorphic on \(D_{r_n} \) with singularities on the boundary. (The \(d_{n,k} \) are defined by the equality.) Therefore we have \(\limsup_{k \rightarrow \infty} |d_{n,k}^{1/k}| = 1/r_n \). Hence there is a \(k_n \) such that

\[
(3.3) \quad |d_{n,k_n}| > r_n^{-k_n}.
\]
We will now make an appropriate choice for the ε_j to insure that f cannot be extended over the boundary of \mathbb{D}. Along the way we will determine constants C_j that are needed for smoothness at the boundary.

Choose $\varepsilon_0 = R'_0$. Then

$$f_{\varepsilon_0}(z) = \frac{1}{r_0 - z} = \sum_{k=1}^{\infty} d_{0,k} z^k$$

with $\limsup_{k \to \infty} |d_{0,k}^{1/k}| = 1/r_0$; in particular there is a C_0 such that $|d_{0,k}| < C_0$.

Suppose $\varepsilon_0, \ldots, \varepsilon_{n-1}$ and C_0, \ldots, C_{n-1} have been chosen in such a way that we have found k_0, \ldots, k_{n-1} with

$$|d_{l,k_j}| > r_j^{-k_j} \quad \text{for } j = 1, \ldots, n-1, \quad l = j, \ldots, n-1,$$

and

$$|d_{j,k}| < \frac{C_l}{k^l} \quad \text{for } l = 0, \ldots, n-1, \quad j = 0, \ldots, n-1, \quad \text{and all } k.$$

Then choose

$$C_n > \sup_k |d_{j,k}| k^n \quad j = 0, \ldots, n-1.$$

This is finite because of (3.4). Next choose $\varepsilon_n < R'_n$ so small that

(1) The inequality (3.5) holds for $l = 0, \ldots, n$ and $j = 0, \ldots, n$. This is possible because of (3.4).

(2)

$$|d_{n,k_j}| > r_j^{-k_j} \quad \text{for } j = 1, \ldots, n-1,$$

which is again possible because of (3.4).

Having chosen ε_n, we can by (3.3) choose k_n so large that $|d_{n,k_n}| > r_n^{-k_n}$. Observe that the coefficients $d_{n,k}$ converge to the coefficients d_k of the power series expansion of f_ε as $n \to \infty$. From (3.3) we see that $|d_{k_j}| > r_j^{-k_j}$ so that the radius of convergence of the power series of f_ε is at most 1, and since f_ε is holomorphic on \mathbb{D}, it equals 1. So f_ε has a singular point b on $C(0,1)$. We split f_ε as

$$f_\varepsilon = f_1 + f_2 = \left(\sum_{j=0}^{n-1} + \sum_{j=n}^{\infty} \right) \frac{\varepsilon_j}{r_j^{2j} - z^{2j}}.$$

Then f_1 is holomorphic in a neighborhood of the closed unit disc and f_2 has at least one singular point on $C(0,1)$, but f_2 is invariant under rotation over a 2^n-th root of unity, which implies that there is a singularity in each arc of length $> 2\pi/2^n$. Therefore, f can nowhere be extended analytically over $C(0,1)$.

Next we show that f is smooth up to the boundary of \mathbb{D}. We have to show that there exist constants $C_l > 0$ such that for every l

$$|d_k| \leq \frac{C_l}{k^l}, \quad \text{for all } k,$$

but this follows from (3.5). □
Remark 3.3. Let D be a domain in \mathbb{C} and let A be a closed polar subset of D. Using methods presented in this paper and in [10], the authors give in [2] a complete characterization of the holomorphic functions f on $D \setminus A$ such that $\Gamma_f = \{(z, f(z)) : z \in D \setminus A\}$ is complete pluripolar in $D \times \mathbb{C}$.

References

Institute of Mathematics, Jagiellonian University, Reymonta 4/526, 30-059 Kraków, Poland
E-mail address: edigaria@im.uj.edu.pl

Faculty of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV, Amsterdam, The Netherlands
E-mail address: janwieg@science.uva.nl