Graphs that are not complete pluripolar
HTML articles powered by AMS MathViewer
- by Armen Edigarian and Jan Wiegerinck
- Proc. Amer. Math. Soc. 131 (2003), 2459-2465
- DOI: https://doi.org/10.1090/S0002-9939-03-06947-8
- Published electronically: January 8, 2003
- PDF | Request permission
Abstract:
Let $D_1\subset D_2$ be domains in $\mathbb {C}$. Under very mild conditions on $D_2$ we show that there exist holomorphic functions $f$, defined on $D_1$ with the property that $f$ is nowhere extendible across $\partial D_1$, while the graph of $f$ over $D_1$ is not complete pluripolar in $D_2\times \mathbb {C}$. This refutes a conjecture of Levenberg, Martin and Poletsky (1992).References
- Leon Brown, Allen Shields, and Karl Zeller, On absolutely convergent exponential sums, Trans. Amer. Math. Soc. 96 (1960), 162–183. MR 142763, DOI 10.1090/S0002-9947-1960-0142763-8
- A. Edigarian & J. Wiegerinck, The pluripolar hull of the graph of a holomorphic function with polar singularities, Indiana Univ. Math. J., to appear.
- Marek Jarnicki and Peter Pflug, Extension of holomorphic functions, De Gruyter Expositions in Mathematics, vol. 34, Walter de Gruyter & Co., Berlin, 2000. MR 1797263, DOI 10.1515/9783110809787
- Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
- Konrad Knopp, Theorie and Anwendung der unendlichen Reihen, Die Grundlehren der mathematischen Wissenschaften, Band 2, Springer-Verlag, Berlin-New York, 1964 (German). Fünfte berichtigte Auflage. MR 0183997
- N. Levenberg, G. Martin, and E. A. Poletsky, Analytic disks and pluripolar sets, Indiana Univ. Math. J. 41 (1992), no. 2, 515–532. MR 1183357, DOI 10.1512/iumj.1992.41.41030
- Norman Levenberg and Evgeny A. Poletsky, Pluripolar hulls, Michigan Math. J. 46 (1999), no. 1, 151–162. MR 1682895, DOI 10.1307/mmj/1030132366
- Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
- Jan Wiegerinck, The pluripolar hull of $\{w=e^{-1/z}\}$, Ark. Mat. 38 (2000), no. 1, 201–208. MR 1749366, DOI 10.1007/BF02384498
- Jan Wiegerinck, Graphs of holomorphic functions with isolated singularities are complete pluripolar, Michigan Math. J. 47 (2000), no. 1, 191–197. MR 1755265, DOI 10.1307/mmj/1030374677
- J. Wiegerinck, Pluripolar sets: hulls and completeness. In: G. Raby & F. Symesak (eds.) Actes des renctres d’analyse complexe, Atlantiques, 2000.
Bibliographic Information
- Armen Edigarian
- Affiliation: Institute of Mathematics, Jagiellonian University, Reymonta 4/526, 30-059 Kraków, Poland
- MR Author ID: 365638
- Email: edigaria@im.uj.edu.pl
- Jan Wiegerinck
- Affiliation: Faculty of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV, Amsterdam, The Netherlands
- Email: janwieg@science.uva.nl
- Received by editor(s): March 15, 2002
- Published electronically: January 8, 2003
- Additional Notes: The first author was supported in part by KBN grant No. 5 P03A 033 21. The first author is a fellow of the A. Krzyżanowski Foundation (Jagiellonian University)
- Communicated by: Mei-Chi Shaw
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2459-2465
- MSC (2000): Primary 32U30; Secondary 31A15
- DOI: https://doi.org/10.1090/S0002-9939-03-06947-8
- MathSciNet review: 1974644