The full Markov-Newman inequality for Müntz polynomials on positive intervals
HTML articles powered by AMS MathViewer
- by David Benko, Tamás Erdélyi and József Szabados
- Proc. Amer. Math. Soc. 131 (2003), 2385-2391
- DOI: https://doi.org/10.1090/S0002-9939-03-06980-6
- Published electronically: February 26, 2003
- PDF | Request permission
Abstract:
For a function $f$ defined on an interval $[a,b]$ let \begin{equation*} \|f\|_{[a,b]} := \sup \{|f(x)|: x \in [a,b]\} . \end{equation*} The principal result of this paper is the following Markov-type inequality for Müntz polynomials.
Theorem. Let $n \geq 1$ be an integer. Let $\lambda _{0}$, $\lambda _{1}$, …, $\lambda _{n}$ be $n+1$ distinct real numbers. Let $0 < a < b$. Then \begin{align*} \frac {1}{3} \sum _{j=0}^{n}{|\lambda _{j}|} + \frac {1}{4\log (b/a)} (n-1)^{2} &\leq \sup _{0 \neq Q}{\frac {\|xQ^{\prime }(x)\|_{[a,b]}}{\|Q\|_{[a,b]}}}\\ &\leq 11 \sum _{j=0}^{n}{|\lambda _{j}|} + \frac {128}{\log (b/a)}(n+1)^2 , \end{align*} where the supremum is taken for all $Q \in \operatorname {span}\{x^{\lambda _{0}}, x^{\lambda _{1}}, \ldots , x^{\lambda _{n}}\}$ (the span is the linear span over $\mathbb {R}$).
References
- Peter Borwein and Tamás Erdélyi, Polynomials and polynomial inequalities, Graduate Texts in Mathematics, vol. 161, Springer-Verlag, New York, 1995. MR 1367960, DOI 10.1007/978-1-4612-0793-1
- Peter Borwein and Tamás Erdélyi, Newman’s inequality for Müntz polynomials on positive intervals, J. Approx. Theory 85 (1996), no. 2, 132–139. MR 1385812, DOI 10.1006/jath.1996.0034
- Tamás Erdélyi, Markov- and Bernstein-type inequalities for Müntz polynomials and exponential sums in $L_p$, J. Approx. Theory 104 (2000), no. 1, 142–152. MR 1753516, DOI 10.1006/jath.1999.3437
- D. J. Newman, Derivative bounds for Müntz polynomials, J. Approximation Theory 18 (1976), no. 4, 360–362. MR 430604, DOI 10.1016/0021-9045(76)90007-1
- Edward B. Saff and Richard S. Varga, On lacunary incomplete polynomials, Math. Z. 177 (1981), no. 3, 297–314. MR 618197, DOI 10.1007/BF01162064
Bibliographic Information
- David Benko
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Email: benko@math.tamu.edu
- Tamás Erdélyi
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Email: terdelyi@math.tamu.edu
- József Szabados
- Affiliation: Alfréd Rényi Institute of Mathematics, P.O.B. 127, Budapest, Hungary, H-1364
- Email: szabados@renyi.hu
- Received by editor(s): March 2, 2002
- Published electronically: February 26, 2003
- Additional Notes: The second author’s research was supported, in part, by the NSF under Grant No. DMS-0070826
The third author’s research was supported by OTKA Grant No. T32872 - Communicated by: Jonathan M. Borwein
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2385-2391
- MSC (2000): Primary 41A17; Secondary 30B10, 26D15
- DOI: https://doi.org/10.1090/S0002-9939-03-06980-6
- MathSciNet review: 1974635