Solution of the quadratically hyponormal completion problem
HTML articles powered by AMS MathViewer
- by Raúl E. Curto and Woo Young Lee
- Proc. Amer. Math. Soc. 131 (2003), 2479-2489
- DOI: https://doi.org/10.1090/S0002-9939-03-07057-6
- Published electronically: February 26, 2003
- PDF | Request permission
Abstract:
For $m\ge 1$, let $\alpha : \alpha _{0}<\cdots <\alpha _{m}$ be a collection of ($m+1$) positive weights. The Quadratically Hyponormal Completion Problem seeks necessary and sufficient conditions on $\alpha$ to guarantee the existence of a quadratically hyponormal unilateral weighted shift $W$ with $\alpha$ as the initial segment of weights. We prove that $\alpha$ admits a quadratically hyponormal completion if and only if the self-adjoint $m\times m$ matrix \begin{equation*} D_{m-1}(s):= \begin {pmatrix}q_{0}&\bar r_{0}&0&\dots &0&0\\ r_{0}&q_{1}&\bar r_{1}&\dots &0&0\\ 0&r_{1}&q_{2}&\dots &0&0\\ \vdots &\vdots &\vdots &\ddots &\vdots &\vdots \\ 0&0&0&\dots &q_{m-2}&\bar r_{m-2}\\ 0&0&0&\dots &r_{m-2}&q_{m-1} \end{pmatrix} \end{equation*} is positive and invertible, where $q_{k}:=u_{k}+|s|^{2} v_{k}$, $r_{k}:=s\sqrt {w_{k}}$, $u_{k}:=\alpha _{k}^{2}-\alpha _{k-1}^{2}$, $v_{k}:=\alpha _{k}^{2}\alpha _{k+1}^{2}-\alpha _{k-1}^{2}\alpha _{k-2}^{2}$, $w_{k}:=\alpha _{k}^{2}(\alpha _{k+1}^{2}-\alpha _{k-1}^{2})^{2}$, and, for notational convenience, $\alpha _{-2}=\alpha _{-1}=0$. As a particular case, this result shows that a collection of four positive numbers $\alpha _{0}<\alpha _{1}<\alpha _{2}<\alpha _{3}$ always admits a quadratically hyponormal completion. This provides a new qualitative criterion to distinguish quadratic hyponormality from 2-hyponormality.References
- Ameer Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103 (1988), no. 2, 417–423. MR 943059, DOI 10.1090/S0002-9939-1988-0943059-X
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Yong Bin Choi, A propagation of quadratically hyponormal weighted shifts, Bull. Korean Math. Soc. 37 (2000), no. 2, 347–352. MR 1757500
- Yong Bin Choi, Jin Kyu Han, and Woo Young Lee, One-step extension of the Bergman shift, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3639–3646. MR 1694855, DOI 10.1090/S0002-9939-00-05516-7
- John B. Conway, The theory of subnormal operators, Mathematical Surveys and Monographs, vol. 36, American Mathematical Society, Providence, RI, 1991. MR 1112128, DOI 10.1090/surv/036
- John B. Conway and Wacław Szymański, Linear combinations of hyponormal operators, Rocky Mountain J. Math. 18 (1988), no. 3, 695–705. MR 972659, DOI 10.1216/RMJ-1988-18-3-695
- Carl C. Cowen, Hyponormal and subnormal Toeplitz operators, Surveys of some recent results in operator theory, Vol. I, Pitman Res. Notes Math. Ser., vol. 171, Longman Sci. Tech., Harlow, 1988, pp. 155–167. MR 958573
- Raúl E. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13 (1990), no. 1, 49–66. MR 1025673, DOI 10.1007/BF01195292
- Raúl E. Curto, Joint hyponormality: a bridge between hyponormality and subnormality, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 69–91. MR 1077422, DOI 10.1090/pspum/051.2/1077422
- Raúl E. Curto, An operator-theoretic approach to truncated moment problems, Linear operators (Warsaw, 1994) Banach Center Publ., vol. 38, Polish Acad. Sci. Inst. Math., Warsaw, 1997, pp. 75–104. MR 1457002
- Raúl E. Curto and Lawrence A. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17 (1991), no. 4, 603–635. MR 1147276
- Raúl E. Curto and Lawrence A. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17 (1993), no. 2, 202–246. MR 1233668, DOI 10.1007/BF01200218
- Raúl E. Curto and Lawrence A. Fialkow, Recursively generated weighted shifts and the subnormal completion problem. II, Integral Equations Operator Theory 18 (1994), no. 4, 369–426. MR 1265443, DOI 10.1007/BF01200183
- Raúl E. Curto and Il Bong Jung, Quadratically hyponormal weighted shifts with two equal weights, Integral Equations Operator Theory 37 (2000), no. 2, 208–231. MR 1769810, DOI 10.1007/BF01192423
- Raúl E. Curto and Woo Young Lee, Joint hyponormality of Toeplitz pairs, Mem. Amer. Math. Soc. 150 (2001), no. 712, x+65. MR 1810770, DOI 10.1090/memo/0712
- —, $k$-hyponormality of finite rank perturbations of unilateral weighted shifts, preprint 2002.
- Raúl E. Curto, Paul S. Muhly, and Jingbo Xia, Hyponormal pairs of commuting operators, Contributions to operator theory and its applications (Mesa, AZ, 1987) Oper. Theory Adv. Appl., vol. 35, Birkhäuser, Basel, 1988, pp. 1–22. MR 1017663
- Raúl E. Curto and Mihai Putinar, Existence of nonsubnormal polynomially hyponormal operators, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 373–378. MR 1091568, DOI 10.1090/S0273-0979-1991-16079-9
- Raúl E. Curto and Mihai Putinar, Nearly subnormal operators and moment problems, J. Funct. Anal. 115 (1993), no. 2, 480–497. MR 1234402, DOI 10.1006/jfan.1993.1101
- R. G. Douglas, Vern Paulsen, and Ke Ren Yan, Operator theory and algebraic geometry, Bull. Amer. Math. Soc. (N.S.) 20 (1989), no. 1, 67–71. MR 955316, DOI 10.1090/S0273-0979-1989-15700-5
- Peng Fan, A note on hyponormal weighted shifts, Proc. Amer. Math. Soc. 92 (1984), no. 2, 271–272. MR 754718, DOI 10.1090/S0002-9939-1984-0754718-2
- P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI 10.1090/S0002-9904-1970-12502-2
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR 675952
- A. D. Joshi, Hyponormal polynomials of monotone shifts, Indian J. Pure Appl. Math. 6 (1975), no. 6, 681–686. MR 451019
- Il Bong Jung and Sang Soo Park, Quadratically hyponormal weighted shifts and their examples, Integral Equations Operator Theory 36 (2000), no. 4, 480–498. MR 1759824, DOI 10.1007/BF01232741
- Scott McCullough and Vern Paulsen, A note on joint hyponormality, Proc. Amer. Math. Soc. 107 (1989), no. 1, 187–195. MR 972236, DOI 10.1090/S0002-9939-1989-0972236-8
- Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 49–128. MR 0361899
- J. G. Stampfli, Which weighted shifts are subnormal?, Pacific J. Math. 17 (1966), 367–379. MR 193520
Bibliographic Information
- Raúl E. Curto
- Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
- MR Author ID: 53500
- Email: curto@math.uiowa.edu
- Woo Young Lee
- Affiliation: Department of Mathematics, SungKyunKwan University, Suwon 440-746, Korea
- Address at time of publication: Department of Mathematics, Seoul National University, Seoul 151-742, Korea
- MR Author ID: 263789
- Email: wylee@yurim.skku.ac.kr, wylee@math.snu.ac.kr
- Received by editor(s): March 19, 2002
- Published electronically: February 26, 2003
- Additional Notes: The work of the first-named author was partially supported by NSF research grants DMS-9800931 and DMS-0099357
The work of the second-named author was partially supported by the Brain Korea 21 Project - Communicated by: David R. Larson
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2479-2489
- MSC (2000): Primary 47B20, 47B35, 47B37; Secondary 47-04, 47A20, 47A57
- DOI: https://doi.org/10.1090/S0002-9939-03-07057-6
- MathSciNet review: 1974646