The strong open set condition for self-conformal random fractals
HTML articles powered by AMS MathViewer
- by Norbert Patzschke
- Proc. Amer. Math. Soc. 131 (2003), 2347-2358
- DOI: https://doi.org/10.1090/S0002-9939-03-07077-1
- Published electronically: March 18, 2003
- PDF | Request permission
Abstract:
We prove that the open set condition and the strong open set condition are equivalent for self-conformal random fractals.References
- Matthias Arbeiter and Norbert Patzschke, Random self-similar multifractals, Math. Nachr. 181 (1996), 5–42. MR 1409071, DOI 10.1002/mana.3211810102
- K. J. Falconer, Random fractals, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 3, 559–582. MR 857731, DOI 10.1017/S0305004100066299
- Siegfried Graf, Statistically self-similar fractals, Probab. Theory Related Fields 74 (1987), no. 3, 357–392. MR 873885, DOI 10.1007/BF00699096
- Ka-Sing Lau, Hui Rao, and Yuan-Ling Ye, Corrigendum: “Iterated function system and Ruelle operator” [J. Math. Anal. Appl. 231 (1999), no. 2, 319–344; MR1669203 (2001a:37013)] by Lau and A. H. Fan, J. Math. Anal. Appl. 262 (2001), no. 1, 446–451. MR 1857239, DOI 10.1006/jmaa.2001.7297
- R. Daniel Mauldin and S. C. Williams, Random recursive constructions: asymptotic geometric and topological properties, Trans. Amer. Math. Soc. 295 (1986), no. 1, 325–346. MR 831202, DOI 10.1090/S0002-9947-1986-0831202-5
- Norbert Patzschke, The strong open set condition in the random case, Proc. Amer. Math. Soc. 125 (1997), no. 7, 2119–2125. MR 1377002, DOI 10.1090/S0002-9939-97-03816-1
- Norbert Patzschke, Self-conformal multifractal measures, Adv. in Appl. Math. 19 (1997), no. 4, 486–513. MR 1479016, DOI 10.1006/aama.1997.0557
- Yuval Peres, MichałRams, Károly Simon, and Boris Solomyak, Equivalence of positive Hausdorff measure and the open set condition for self-conformal sets, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2689–2699. MR 1838793, DOI 10.1090/S0002-9939-01-05969-X
- Andreas Schief, Separation properties for self-similar sets, Proc. Amer. Math. Soc. 122 (1994), no. 1, 111–115. MR 1191872, DOI 10.1090/S0002-9939-1994-1191872-1
Bibliographic Information
- Norbert Patzschke
- Affiliation: Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, D-07740 Jena, Germany
- Email: patzschke@mathematik.uni-jena.de
- Received by editor(s): March 6, 2001
- Received by editor(s) in revised form: August 30, 2001
- Published electronically: March 18, 2003
- Communicated by: David Preiss
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2347-2358
- MSC (2000): Primary 28A80; Secondary 60D05, 60G57
- DOI: https://doi.org/10.1090/S0002-9939-03-07077-1
- MathSciNet review: 1974631