## Degree bounds in quantum Schubert calculus

HTML articles powered by AMS MathViewer

- by Alexander Yong
- Proc. Amer. Math. Soc.
**131**(2003), 2649-2655 - DOI: https://doi.org/10.1090/S0002-9939-03-06850-3
- Published electronically: January 8, 2003
- PDF | Request permission

## Abstract:

Fulton and Woodward have recently identified the smallest degree of $q$ that appears in the expansion of the product of two Schubert classes in the (small) quantum cohomology ring of a Grassmannian. We present a combinatorial proof of this result, and provide an alternative characterization of this smallest degree in terms of the rim hook formula for the quantum product.## References

- Aaron Bertram,
*Quantum Schubert calculus*, Adv. Math.**128**(1997), no. 2, 289–305. MR**1454400**, DOI 10.1006/aima.1997.1627 - Aaron Bertram, Ionuţ Ciocan-Fontanine, and William Fulton,
*Quantum multiplication of Schur polynomials*, J. Algebra**219**(1999), no. 2, 728–746. MR**1706853**, DOI 10.1006/jabr.1999.7960 - A. Buch,
*Quantum cohomology of Grassmannians*, e-print math.AG/0106268. - A. Buch,
*Littlewood-Richardson Calculator*, software available at http://www-math. mit.edu/˜abuch. - William Fulton,
*Eigenvalues, invariant factors, highest weights, and Schubert calculus*, Bull. Amer. Math. Soc. (N.S.)**37**(2000), no. 3, 209–249. MR**1754641**, DOI 10.1090/S0273-0979-00-00865-X - William Fulton,
*Young tableaux*, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR**1464693** - W. Fulton and R. Pandharipande,
*Notes on stable maps and quantum cohomology*, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR**1492534**, DOI 10.1090/pspum/062.2/1492534 - W. Fulton and C. Woodward, preprint, 2001.
- G. James and A. Kerber,
*The representation theory of the symmetric group*, Encyclopedia of Mathematics and its Applications, 16. Addison-Wesley Co. Reading, Mass., 1981. - M. Kontsevich and Y. Manin,
*Gromov-Witten classes, quantum cohomology, and enumerative geometry*, Mirror Symmetry II, Amer. Math. Soc., Providence, RI, 1997, 607-653. - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR**1354144** - A. Postnikov,
*Affine approach to quantum Schubert calculus*, e-print math. CO/0205165. - Y. Ruan and G. Tian,
*A mathematical theory of quantum cohomology,*Math. Res. Lett.**1**(1994) 269-278. - F. Sottile,
*Rational Curves on Grassmannians: systems theory, reality, and transverality*, to appear in Contemporary Mathematics, 2001. - Richard P. Stanley,
*Enumerative combinatorics. Vol. 2*, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR**1676282**, DOI 10.1017/CBO9780511609589

## Bibliographic Information

**Alexander Yong**- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- MR Author ID: 693975
- Email: ayong@umich.edu
- Received by editor(s): December 14, 2001
- Received by editor(s) in revised form: April 2, 2002
- Published electronically: January 8, 2003
- Communicated by: John R. Stembridge
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**131**(2003), 2649-2655 - MSC (1991): Primary 14M15; Secondary 05E05, 14N10
- DOI: https://doi.org/10.1090/S0002-9939-03-06850-3
- MathSciNet review: 1974319