Subspaces of $L_p$ with more than one complex structure
HTML articles powered by AMS MathViewer
- by Razvan Anisca
- Proc. Amer. Math. Soc. 131 (2003), 2819-2829
- DOI: https://doi.org/10.1090/S0002-9939-03-06858-8
- Published electronically: January 28, 2003
- PDF | Request permission
Abstract:
We propose a method of constructing explicit Banach spaces not isomorphic to their complex conjugates as subspaces of a natural class of Banach spaces. In particular, it is shown that $L_p$, for $1\leq p<2$, contains real subspaces with at least two non-isomorphic complex structures.References
- J. Bourgain, Real isomorphic complex Banach spaces need not be complex isomorphic, Proc. Amer. Math. Soc. 96 (1986), no. 2, 221â226. MR 818448, DOI 10.1090/S0002-9939-1986-0818448-2
- W. B. Johnson, J. Lindenstrauss, and G. Schechtman, On the relation between several notions of unconditional structure, Israel J. Math. 37 (1980), no. 1-2, 120â129. MR 599307, DOI 10.1007/BF02762873
- N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1â30. MR 542869, DOI 10.1090/S0002-9947-1979-0542869-X
- N. J. Kalton, An elementary example of a Banach space not isomorphic to its complex conjugate, Canad. Math. Bull. 38 (1995), no. 2, 218â222. MR 1335101, DOI 10.4153/CMB-1995-031-4
- Ryszard A. Komorowski and Nicole Tomczak-Jaegermann, Banach spaces without local unconditional structure, Israel J. Math. 89 (1995), no. 1-3, 205â226. MR 1324462, DOI 10.1007/BF02808201
- Ryszard A. Komorowski and Nicole Tomczak-Jaegermann, Erratum to: âBanach spaces without local unconditional structureâ [Israel J. Math. 89 (1995), no. 1-3, 205â226; MR1324462 (96g:46007)], Israel J. Math. 105 (1998), 85â92. MR 1639731, DOI 10.1007/BF02780323
- R. Komorowski and N. Tomczak-Jaegermann, Subspaces of $l_2(X)$ and $Rad(X)$ without unconditional structure, Studia Math. 149 (2002), 1â21.
- Timo Ketonen, On unconditionality in $L_{p}$ spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 35 (1981), 42. MR 612350
- D. R. Lewis, Finite dimensional subspaces of $L_p$, Studia Math. 63(1978), 207-212.
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- StanisÅaw J. Szarek, A superreflexive Banach space which does not admit complex structure, Proc. Amer. Math. Soc. 97 (1986), no. 3, 437â444. MR 840625, DOI 10.1090/S0002-9939-1986-0840625-5
- StanisÅaw J. Szarek, On the existence and uniqueness of complex structure and spaces with âfewâ operators, Trans. Amer. Math. Soc. 293 (1986), no. 1, 339â353. MR 814926, DOI 10.1090/S0002-9947-1986-0814926-5
- Nicole Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774
Bibliographic Information
- Razvan Anisca
- Affiliation: Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- MR Author ID: 621000
- Email: anisca@math.ualberta.ca
- Received by editor(s): July 17, 2001
- Received by editor(s) in revised form: April 3, 2002
- Published electronically: January 28, 2003
- Additional Notes: This work was supported by an Izaak Walton Killam Memorial Scholarship at the University of Alberta
- Communicated by: David R. Larson
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2819-2829
- MSC (2000): Primary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-03-06858-8
- MathSciNet review: 1974339