STRICT CONVEXITY OF SOME SUBSETS OF HANKEL OPERATORS

CAIXING GU AND JONATHAN E. SHAPIRO

(Communicated by Joseph A. Ball)

ABSTRACT. We find some extreme points in the unit ball of the set of Hankel operators and show that the unit ball of the set of compact Hankel operators is strictly convex. We use this result to show that the collection of $N \times N$ lower triangular Toeplitz contractions is strictly convex. We also find some extreme points in certain reduced Cowen sets and discuss cases in which they are or are not strictly convex.

1. INTRODUCTION

M. Chō, R. Curto, and W. Lee [2] recently showed that the set T_N of all lower triangular contractive Toeplitz matrices, matrices of the form

\[
\begin{pmatrix}
 c_0 & 0 & 0 & \cdots & 0 \\
 c_1 & c_0 & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 c_{N-2} & \ddots & \ddots & 0 \\
 c_{N-1} & c_{N-2} & \cdots & c_1 & c_0
\end{pmatrix}
\]

is strictly convex. Their proof relied on the solution to the Carathéodory-Schur interpolation problem. In this paper, we will find some extreme points in the unit ball of the set of Hankel operators and use these to show that the unit ball of the set of compact Hankel operators is strictly convex. The result for lower triangular Toeplitz contractions can then be viewed as a special case. We will also examine, as in [2], the strict convexity of certain Cowen sets related to hyponormal Toeplitz operators. We thus give a complete answer to a question of Cowen [3].

The exploration of extreme points in the unit ball of the set of Hankel operators may have interest beyond those aspects discussed here. We will use H_f to denote the Hankel operator with L^∞ symbol f, given by

$$H_f : H^2 \rightarrow (H^2)^\perp, \quad H_f h = (I - P) fh,$$

Received by the editors October 10, 2001 and, in revised form, April 1, 2002.
2000 Mathematics Subject Classification. Primary 47B35, 47B20.
Key words and phrases. Hankel operator, Toeplitz operator, convex.

The work of the first author was partially supported by the National Science Foundation Grant DMS-0075127 and both authors were supported by the SFSG Grants of California Polytechnic State University.
Lemma 1. Assume $M. Krein$ [1]. There is also a natural isometric isomorphism between $L_{g,k}^\infty$, above, for some θ is the only function satisfying $H \theta \theta = T(x)$. Since $T(x)$ is the Toeplitz operator with symbol w, the essential norm of w is the model operator on f. We must show that if $H f = H q$ and $q = e^{it}y/x$, then we must have $H \theta = H q$, and $q \parallel \theta$. The following lemma is from C. Foias, A. Tannenbaum and G. Zames [6]. For completeness, we outline a proof.

Lemma 2. Let θ be an inner function and w be an analytic rational function, such that θ and w are coprime. The essential norm of $H_{\theta w}$ is equal to

$$\max \{|w(z)| : z \text{ is any essential singularity of } \theta \}.$$

Proof. Since $H_{\theta w} = H_{\theta} T_w$, where T_w is the Toeplitz operator with symbol w and $H_{\theta} \pi H_{\theta}$ is the projection of H^2 onto $H(\theta),$ $H_{\theta}^* H_{\theta w} = T^n \theta^* H_{\theta} T_w = w(T) w(T),$ where T is the model operator on $H(\theta)$, $T = P_{H(\theta)} z |H(\theta)$ and $w(T)$ is the functional calculus. The essential norm of $w(T)$ is given by (2.1); see [6].

3. Subsets of Hankel operators

Now we prove the main theorem of this section and discuss some of its consequences.

Theorem 1. If $\|H f\| = 1$ and there is an x in H^2 with $\|H f x\| = \|H f\| \|x\|$, then $H f$ is an extreme point in the unit ball of the set of Hankel operators.

Proof. We must show that if $\|H f\| = 1$ and $H f$ attains its norm, and we write $H f = \frac{1}{2} (H_g + H_k)$ for H_g and H_k in the unit ball of the set of Hankel operators, then we must have $H f = H_g = H_k$. Assume we can write $H f = \frac{1}{2} (H_g + H_k)$ as above, for some $g, k \in L^\infty$. It is clear that since $\|H f\| = 1$, we must also have $\|H_g\| = 1$ and $\|H_k\| = 1$. Then by Nehari’s Theorem, there must be functions q_1 and q_2 with

$$\inf_{q \in H^\infty} \|g - q\| = \inf_{q \in H^\infty} \|g - q_1\| = 1 \text{ and}$$

$$\inf_{q \in H^\infty} \|k - q\| = \inf_{q \in H^\infty} \|k - q_2\| = 1.$$

Using Lemma 1, let p the unique unimodular function such that $H f = H_p$ and $\|H f\| = \|p\| = 1$. We can then write

$$H f = H_p = \frac{1}{2} (H_g - q_1 + H_k - q_2) = H_{\frac{1}{2} (g_k + k - q_1 - q_2)}.$$
Then there is some $h \in H^\infty$ with

$$p = \frac{1}{2} (g + k - q_1 - q_2) + h.$$

We then have

$$1 \geq \left\| \frac{1}{2} (g - q_1) + \frac{1}{2} (k - q_2) \right\|_\infty = \|p - h\|_\infty \geq \inf_{q \in H^\infty} \|p - q\|_\infty = \|p\|_\infty = 1.$$

The inequalities above must all be equalities, i.e., we have $1 = \inf_{q \in H^\infty} \|p - q\|_\infty = \|H_p\|_\infty = \|p\|_\infty$. Lemma 1 tells us there is a unique function q (which will be unimodular) with $H_p = H_q$ and $\|H_p\| = \|q\|_\infty = 1$, and p is such a function, so p is unimodular. Since $H_{p - h} = H_p$ and $\|p - h\|_\infty = 1$, by uniqueness we must have $h = 0$, and

$$\frac{1}{2} (g - q_1) + \frac{1}{2} (k - q_2) = p$$

is thus unimodular. We can thus conclude that $\frac{1}{2} (g - q_1) = \frac{1}{2} (k - q_2)$, and thus $H_g = H_k$, from which it follows that both are equal to H_f.

Corollary 1. The set of all compact Hankel operators is strictly convex.

Proof. It is easy to see that this set is convex. All compact Hankel operators attain their norms, and, by the theorem, any Hankel operator of norm 1 which attains its norm is an extreme point in the unit ball of all Hankel operators, and thus an extreme point in any subset. It can then be seen that the boundary of the set of compact Hankel operators consists entirely of extreme points, so it is strictly convex.

Corollary 2. For any $f \in C(T)$, $G = \{H_{fq} : q \in H^\infty \text{ and } \|H_{fq}\| \leq 1\}$ is a strictly convex set. In particular, if θ is rational, then $\{H_{\theta q} : q \in H^\infty \text{ and } \|H_{\theta q}\| \leq 1\}$ is strictly convex.

Proof. G is a set of compact Hankel operators. We must show that every boundary point of G is an extreme point of G. Boundary points of G must be operators of norm 1 and are thus boundary points of the unit ball of the set of all compact Hankel operators. They are thus extreme points in that set, and consequently in the subset G.

Corollary 3. If $f \in H^\infty$ is such that $\|H_f\|_e < \|H_f\| = 1$, then H_f is an extreme point in the unit ball of the set of Hankel operators.

Proof. If $\|H_f\|_e < \|H_f\|$, then H_f attains its norm.

Example. Consider the Hankel operators $H_{\theta \pi(1+\alpha \theta)}$ for an inner function θ and complex constant α. It is shown by the authors in [7] that $\gamma = \|H_{\theta \pi(1+\alpha \theta)}\|$ is given by

$$\gamma^2 = \frac{2 + 2 \Re \{\alpha \theta(0)\} + |\alpha|^2 + \sqrt{4 |\alpha|^2 (1 + 2 \Re \{\alpha \theta(0)\}) + |\alpha|^4 - 4 |\Im \{\alpha \theta(0)\}|^2}}{2}.$$
If θ is rational, then Corollary 2 tells us that $\frac{1}{\gamma}H_{\theta(1+\alpha\theta)}$ is an extreme point in the unit ball of the set of Hankel operators. Note that $H_{\theta(1+\alpha\theta)} = H_{\theta} + H_{\alpha\theta}$ is a rank one perturbation of H_{θ}, so they have the same essential norm.

If θ is irrational, then H_{θ} is the projection onto the infinite dimensional space $\mathcal{H}(z\theta)$, so $\|H_{\theta}\|_e = \|H_{\theta(1+\alpha\theta)}\|_e = 1$. Let us now choose α to be any number which makes $\gamma > 1$. The operator $\frac{1}{\gamma}H_{\theta(1+\alpha\theta)}$ will then be a Hankel operator of unit norm, but we will have $\|\frac{1}{\gamma}H_{\theta(1+\alpha\theta)}\|_e = \frac{1}{\gamma} < 1$. This then tells us by Corollary 3 that $\frac{1}{\gamma}H_{\theta(1+\alpha\theta)}$ is an extreme point in the unit ball of the set of Hankel operators.

Theorem 2. The unit ball of the set of all Hankel operators is not strictly convex, i.e., not every Hankel operator of norm 1 is an extreme point of the unit ball.

Proof. Let $m(z)$ be any inner function with one essential singularity at some non-empty set \mathcal{N}. Let w_1 and w_2 be distinct rational functions with $\|w_1\|_\infty = \|w_2\|_\infty = |w_1(z_0)| = |w_2(z_0)| = 1$ for some $z_0 \in \mathcal{N}$. For example, $w_1 = 1$ and $w_2 = \frac{z-z_0}{1-z}$.

Let $m(z) = \prod_{i=1}^d (z-z_i)$ be the $m(z)$ be a contractive lower-triangular Toeplitz matrix. Let

$$H = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

be the $N \times N$ Hankel matrix corresponding to the Hankel operator H_{θ}. It is clear that H is unitary and that HC is thus a contractive Hankel matrix.

We can now give a different proof of the theorem of Chir, Curto, and Lee 2.

Theorem 3. T_N is strictly convex.

Proof. That T_N is convex is easy to see. To show it is strictly convex, it is sufficient to show that for any two elements C_1 and C_2 in ∂T_N, if $\frac{1}{2} (C_1 + C_2) \in \partial T_N$ (i.e., has norm 1), then $C_1 = C_2$. If this were not the case, then there would be C_1 and C_2 in ∂T_N with $C_1 \neq C_2$ and $\frac{1}{2} (C_1 + C_2) \in \partial T_N$. We would then have
Hankel matrices of unit norm HC_1 and HC_2 with $\frac{1}{2}(HC_1 + HC_2)$ again of unit norm. The same would be true of the corresponding finite-rank (and thus compact) Hankel operators, and this would violate the strict convexity of the unit ball of the space of compact Hankel operators. □

5. Cowen sets

We can use the Hankel operator methods to get several results concerning the extreme points of the reduced Cowen set (see [3], [4]) for a function $f \in H^\infty$. Recall that an operator A is hyponormal if its self-commutator $[A^*, A] = A^*A - AA^*$ is a positive operator. For a function $f \in H^\infty$, the Cowen set is

$$G_f = \{g \in H^\infty : Tf + \overline{\varphi} \text{ is hyponormal} \}.$$

Since the hyponormality of $Tf + \overline{\varphi}$ is independent of the constant term in Fourier series for $f + \overline{\varphi}$, we will assume, without loss of generality, that $g(0) = 0$, and define the reduced Cowen set

$$G'_f = \{g \in zH^\infty : Tf + \overline{\varphi} \text{ is hyponormal} \}.$$

It is shown in [4] that the Cowen set G_f is weakly compact and convex, and hence the reduced Cowen set G'_f is also weakly compact and convex. In 1988, Cowen posed the following:

Problem 1 ([3] Question 3). What are the extreme points of G'_f? In particular, if $g \in G'_f$ but $\lambda g \notin G'_f$ for all $|\lambda| > 1$, is g an extreme point?

We will provide some answers to these questions. To do so, we will define

$$B_f = \{g \in G'_f : \lambda g \notin G'_f \text{ for all } |\lambda| > 1 \}.$$

The second question, then, is whether it is true that

$$B_f = \text{ext } G'_f.$$

Our analysis will depend on whether $\overline{\varphi}$ is or is not of bounded type, i.e., can be expressed as the quotient of a bounded analytic function and an inner function. In the first case, we can write $\overline{\varphi} = \frac{h}{\theta}$ for $h \in H^\infty$ and θ inner. If h and θ are coprime, we then have $\ker H_{\overline{\varphi}} = \theta H^2$. In the other case, we will have $\ker H_{\overline{\varphi}} = \{0\}$. We will prove, over the course of this section, the following theorem.

Theorem 4.

1. If $\ker H_{\overline{\varphi}} = \{0\}$, then $B_f \supseteq \text{ext } G'_f$.
2. If $\ker H_{\overline{\varphi}} = \theta H^2$ for an irrational inner function θ, then $B_f \supseteq \text{ext } G'_f$.
3. If $\ker H_{\overline{\varphi}} = \theta H^2$ for a rational inner function θ, then $B_f = \text{ext } G'_f$.

This will completely answer the second question in the problem above. The proof of part 1 of the above theorem will be given after Proposition 4. The proof of part 2 will be given at the end of Section 5.2 and the proof of part 3 at the beginning of Section 5.3.

Since there is no bounded projection of L^∞ onto H^∞, we will need the following lemma whose proof is a direct computation and is omitted.

Lemma 3. If $f \in H^\infty$ and k in L^∞ is a rational function, then both $P[\overline{k}f]$ and $P[k\overline{f}]$ are in H^∞.

For an inner function θ, recall $\mathcal{H}(\theta) = H^2 \ominus \theta H^2$.
Lemma 4. Let θ be an inner function. Let a ∈ H^∞ be such that $\overline{\theta}a = \overline{f}$ for some $f \in H^\infty$. If k is in H^∞ or θ is rational, then $P_{H(\theta)}(ka)$ is in H^∞.

Proof. An easy calculation shows that $P_{H(\theta)}h = h - \theta P(\overline{h})$ for $h \in H^2$, so

$$P_{H(\theta)}(ka) = ka - \theta P(\overline{ka}) = ka - \theta P(k\overline{f}).$$

The result follows from Lemma 3 by noting $f, ka \in H^\infty$. □

5.1. The set G'_f when $\ker H_\theta = \{0\}$. We will restrict our attention here to $f \in H^\infty$ such that $\ker H_\theta = \{0\}$. We will be interested in those g in H^∞ making $T_f + g$ hyponormal, so for such a g, let $g = zg_1$ for $g_1 \in H^\infty$.

It is useful to note that $T_f + g$ is hyponormal (see [4]) if and only if $H^*_g H_g \leq H^*_f H_f$.

By Cowen’s characterization [4], $T_f + g$ is hyponormal if and only if there is some function $k \in H^\infty$ with $\|k\|_\infty \leq 1$ with $g - k\overline{f} = h$ for some $h \in H^2$.

For any such k, write $zg_1 = h + k\overline{f}$

or

$$g_1 = z\overline{h} + \overline{z}k\overline{f}.$$ (5.1)

This is the same as saying that $g_1 = P[z\overline{f}]$. Thus we can conclude that $g \in G'_f$ if and only if $g \in H^\infty$ and $g \in \widehat{G}_f$ where the set \widehat{G}_f is defined by

$$\widehat{G}_f = \{zP[z\overline{f}] : \|z\|_\infty \leq 1\} = \left\{g \in zH^2 : H^*_g H_g \leq H^*_f H_f\right\},$$

and we have proved

$$G'_f = \widehat{G}_f \cap H^\infty \text{ and } B_f = \left\{zP[z\overline{f}] : \|z\|_\infty = 1\right\} \cap H^\infty.$$ (5.2)

Let $(H^\infty)_1$ denote the closed unit ball of H^∞. We will now define a map $\phi : (H^\infty)_1 \to \widehat{G}_f$ by

$$\phi(k) = zP[z\overline{f}].$$

Then ϕ is linear, and it is easy to see that ϕ maps $(H^\infty)_1$ onto \widehat{G}_f.

Claim 1. ϕ is a bijection.

Proof. We must show that ϕ is one-to-one. If $\phi(k_1) = \phi(k_2)$, then $P[z\overline{k_1}f] = P[z\overline{k_2}f]$, i.e., $P[z(\overline{k_1} - \overline{k_2})f] = 0$, or

$$z(\overline{k_2} - \overline{k_1})f = z\overline{h},$$

for some $h \in H^2$.

This is equivalent to

$$(k_2 - k_1)f = h,$$

which means that $k_2 - k_1$ would be in the kernel of H_θ, which we are assuming to be $\{0\}$. □
Any bijective linear operator will preserve extreme points, so we know that the extreme points of \(G'_f \) are precisely the images of the extreme points of \((H^\infty) \), which are known to be those \(k \) with
\[
\int_0^{2\pi} \log (1 - |k(e^{i\theta})|) \, d\theta = -\infty.
\]
Since \(G'_f = \widetilde{G}_f \cap H^\infty \), extreme points of \(G'_f \) must include all \(\phi(k) \) for \(k \) an extreme point in the closed unit ball of \(H^\infty \), when \(\phi(k) = zP[\frac{1}{k}f] \) is also in \(H^\infty \).

For example, if \(k \) is a finite Blaschke product, by Lemma 3 \(\phi(k) = zP[\frac{1}{k}f] \) is indeed in \(H^\infty \). Whether there are any other extreme points of \(G'_f \), we cannot say. Summarizing the above discussion we have

Proposition 1. If \(\ker H_f = \{0\} \), then
\[
B_f = \{ zP[\frac{1}{k}f] : k \in H^\infty \text{ satisfying } \|k\|_\infty = 1 \} \cap H^\infty,
\]
\[
\text{ext } G'_f \supseteq \left\{ zP[\frac{1}{k}f] : k \in H^\infty \text{ satisfying } \int_0^{2\pi} \log (1 - |k(e^{i\theta})|) \, d\theta = -\infty \right\} \cap H^\infty.
\]
In particular if \(\theta \) is a finite Blaschke product, then \(zP[\frac{1}{k}f] \in \text{ext } G'_f \). If \(\theta_1 \) and \(\theta_2 \) are two distinct finite Blaschke products, then \(zP[\frac{1}{k}f] \not\in \text{ext } G'_f \) for \(k = \lambda\theta_1 + (1 - \lambda)\theta_2 \) with \(0 < \lambda < 1 \).

We now prove part 1 of Theorem 4. Assume \(\ker H_f = \{0\} \). Then \(B_f \supseteq \text{ext } G'_f \) follows from \([1,2]\). Let \(\theta_1 \) and \(\theta_2 \) be two distinct Blaschke products such that \(k(z) = 1 \theta_1 + 2 \theta_2 \) satisfying \(\|k\|_\infty = 1 \). For example \(\theta_1 = 1 \), \(\theta_2 = z \). By the above proposition, we have \(zP[\frac{1}{k}f] \in B_f \) and \(P[\frac{1}{k}f] \not\in \text{ext } G'_f \). Therefore
\[
B_f \supseteq \text{ext } G'_f.
\]

We now give examples of \(f \) such that \(G'_f = \widetilde{G}_f \cap H^\infty = \widetilde{G}_f \), so the extreme points in \(G'_f \) are identified as above.

Lemma 5. If \(f = \sum_{n=0}^{n=\infty} f_n z^n \in H^\infty \) satisfying \(M = \sum_{n=0}^{n=\infty} |f_n| \sqrt{n+1} < \infty \), then
\[
\|P[kf]\|_\infty \leq M \|k\|_\infty \text{ for } k \in H^\infty.
\]

Proof. We write
\[
P[kf] = \sum_{n=0}^{n=\infty} f_n P[kz^n].
\]
Let \(k = \sum_{j=0}^{j=\infty} k_j z^j \). It is clear that \(\|k\|_2^2 = \sum_{j=0}^{j=\infty} |k_j|^2 \leq \|k\|_\infty^2 \). Therefore
\[
|P[kz^n]|^2 = \left(\sum_{j=0}^{j=\infty} |k_{n-j} z^j| \right)^2 \leq \left(\sum_{j=0}^{j=\infty} |k_{n-j}|^2 \right) \left(\sum_{j=0}^{j=\infty} |z|^j \right)^2 \leq (n+1) \|k\|_\infty^2
\]
and
\[
|P[kf]| = \left| \sum_{n=0}^{n=\infty} f_n P[kz^n] \right| \leq \sum_{n=0}^{n=\infty} |f_n| \sqrt{n+1} \|k\|_\infty = M \|k\|_\infty.
\]
The proof is complete. \(\square \)
Example. If f satisfies the condition in the above proposition, then $G'_f = \widehat{G_f} \cap H^\infty = \widehat{G_f}$. For example, let $f(z) = e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$. Then $f(z)$ satisfies the condition in the above lemma. Also since $f'(z) = e^z$ is not meromorphic in \mathbb{D}, $e^z \neq \frac{b}{h}$ for any H^2 function h and inner function θ. Therefore $\ker H^\infty = \{0\}$ and

\[
\text{ext } G'_f = \{zP[\overline{ke^z}] : k \text{ is an extreme point of } (H^\infty)\}.
\]

5.2. The set G'_f when $\ker H^\infty = \theta H^2$. In this section we will assume $\ker H^\infty = \theta H^2$ for some inner function θ.

When $T_{f+\overline{\theta}}$ is hyponormal, we will, without loss of generality, assume that $f(0) = g(0) = 0$. It is shown in (5.1) that we can write $f = \overline{\theta}a$ for some $a \in \mathcal{H}(\theta) \cap H^\infty$. Let $g \in G'_f$. Since $T_{f+\overline{\theta}}$ is hyponormal, $\overline{\theta} = \overline{\theta}b$ for some $b \in \mathcal{H}(\theta) \cap H^\infty$. We then know that $T_{f+\overline{\theta}}$ is hyponormal if and only if there is an H^∞ function k with $\|k\|_\infty \leq 1$ and

\[
\overline{\theta} - k\overline{\theta} = h \quad \text{for some } h \in H^2
\]

\[
\iff \overline{\theta}b - k\overline{\theta}a = h
\]

\[
\iff b = \theta h + ka.
\]

Since $b \in \mathcal{H}(\theta)$, we can conclude that $b = P_{\mathcal{H}(\theta)}(ka)$. Now let k be any solution to $b = \theta h + ka$ (for some $h \in H^2$). Then if l is any function in H^∞ (not necessarily with $\|l\|_\infty \leq 1$) satisfying $b = \theta h + la$ for some $h \in H^2$, then

\[
\theta (h - h_1) + (l - k) a = 0
\]

or

\[
(l - k) a = \theta (h_1 - h).
\]

Since $a \in \mathcal{H}(\theta)$, θ must divide $l - k$, so we can write $l = k + \theta x$ for some $x \in H^\infty$. This is in contrast to (5.1), where if $\ker H^\infty = \{0\}$, then the $k \in H^\infty$ is unique. We can thus conclude that there is some solution k of norm at most 1 in $b = \theta h + ka$ (and thus $T_{f+\overline{\theta}}$ is hyponormal) if and only if there is some $l = k + \theta x$ of norm at most 1, i.e., $\inf_{x \in H^\infty} \|k + \theta x\|_\infty \leq 1$. By Nehari’s Theorem,

\[
\inf_{x \in H^\infty} \|k + \theta x\|_\infty = \inf_{x \in H^\infty} \|\overline{\theta}k + x\|_\infty = \|H_{\overline{\theta}k}\|.
\]

Putting the above facts together, we see that for $g \in H^\infty_0 := \{z \in H^\infty\}$, $T_{f+\overline{\theta}}$ is hyponormal if and only if there is some $k \in H^\infty$ with $H_{\overline{\theta}k} \leq 1$, and in this case, $g = \overline{\theta}b$ where $b = P_{\mathcal{H}(\theta)}(ka)$. Equivalently,

\[
g = \overline{\theta} P_{\mathcal{H}(\theta)}(ka) = \overline{\theta} P_{\mathcal{H}(\theta)}(\theta k\overline{\theta}a) = \overline{\theta} P_{\mathcal{H}(\theta)}(\theta k\overline{f}).
\]

Now let

\[
\widehat{G_f} = \left\{\theta P_{\mathcal{H}(\theta)}(ka) : \|H_{\overline{\theta}k}\| \leq 1\right\}.
\]

We conclude that

\[
G'_f = \widehat{G_f} \cap H^\infty \quad \text{and} \quad B_f = \left\{\theta P_{\mathcal{H}(\theta)}(ka) : \|H_{\overline{\theta}k}\| = 1\right\} \cap H^\infty.
\]

Define

\[
\widehat{G_f} = \{H_{\overline{\theta}k} : \|H_{\overline{\theta}k}\| \leq 1\}.
\]

For $k \in H^\infty$, let ϕ be defined by

\[
\phi : \theta P_{\mathcal{H}(\theta)}(ka) \mapsto H_{\overline{\theta}k}.
\]
Claim 2. ϕ is a linear bijection of \tilde{G}_f onto \tilde{G}_f.

Proof. Let k_1 and k_2 be in H^∞. Then

$$P_{\hat{H}(\theta)}(k_1a) = P_{\hat{H}(\theta)}(k_2a)$$

$$\iff k_1a = k_2a + \theta h$$ for some $h \in H^2$

$$\iff (k_1 - k_2)a = \theta h$$

$$\iff \theta \text{ divides } (k_1 - k_2), \text{ since } a \in \mathcal{H}(\theta)$$

$$\iff k_1 = k_2 + \theta h_1$$ for some $h_1 \in H^2$

$$\iff \theta k_1 = \theta k_2 + h_1$$

$$\iff H_{\tilde{\theta}k_1} = H_{\tilde{\theta}k_2}.$$

This tells us that ϕ is well-defined, and, further, that it is injective. It is easily seen to be surjective by the definition of G_f and \tilde{G}_f. \qed

Again using the fact that a bijective map preserves the extreme points, we conclude:

Proposition 2. The extreme points of \tilde{G}_f are exactly

$$\left\{ \theta P_{\hat{H}(\theta)}(ka) : H_{\tilde{\theta}k} \text{ is an extreme point of } \tilde{G}_f \right\}.$$

The extreme points of $G'_f = \tilde{G}_f \cap H^\infty$ include

$$\left\{ \theta P_{\hat{H}(\theta)}(ka) : H_{\tilde{\theta}k} \text{ is an extreme point of } \tilde{G}_f \right\} \cap H^\infty.$$

We can now prove part 2 of Theorem 4. Assume $\ker H_{\mathcal{P}} = \theta H^2$ for an irrational inner function θ. Take for example a function f which has θ as an inner function with one essential singularity at $z = 1$. Let $k = \lambda z + (1 - \lambda) z^2$ for $0 < \lambda < 1$. We then know, by the proof of Theorem 4, that $H_{\tilde{\theta}k}$ is a boundary point but not an extreme point in \tilde{G}_f, so we know that $g = \theta P_{\hat{H}(\theta)}(ka)$ is not an extreme point of \tilde{G}_f. By Lemma 4, $g \in H^\infty$, so it is a nonextreme point in G'_f as well. This g is in B_f since it is the image under ϕ of a boundary point. Thus $B_f \supseteq \text{ext } G'_f$.

5.3. The set G'_f when $\ker H_{\mathcal{P}} = \theta H^2$ for rational θ. We will now prove part 3 of Theorem 4. We consider the case when θ is a rational inner function (a finite Blaschke product). In this case, Lemma 4 tells us that $\theta P_{\hat{H}(\theta)}(ka)$ is always in H^∞, therefore $G'_f = \tilde{G}_f \cap H^\infty = \tilde{G}_f$. In fact, G'_f consists of rational functions and is a compact subset of H^∞. Furthermore, by Theorem 2 the extreme points of G'_f are the pre-images under ϕ of the extreme points of \tilde{G}_f. Since here \tilde{G}_f is of the form in Corollary 2, the extreme points of \tilde{G}_f coincide with its boundary points. That is,

$$\text{ext } G'_f = \left\{ \theta P_{\hat{H}(\theta)}(ka) : H_{\tilde{\theta}k} \text{ is an extreme point of } \tilde{G}_f \right\}$$

$$= \left\{ \theta P_{\hat{H}(\theta)}(ka) : \|H_{\tilde{\theta}k}\| = 1 \right\} = \left\{ \theta P_{\hat{H}(\theta)}(\theta k f) : \|H_{\tilde{\theta}k}\| = 1 \right\} = B_f.$$

Ch. Curto, and Lee [2] show that for $f(z) = \sum_{j=0}^{N} a_j z^j$ an analytic polynomial, g must be a polynomial of degree at most N, and the answer to the second question
posed in Problem 1 above is yes, and that all boundary points are extreme points, i.e., that the reduced Cowen set is strictly convex. These can be seen as special cases of the work above.

When f is an analytic polynomial of degree N, we have $\theta = z^N$, and

$$\text{ext } G'_f = \{ g = z^N P_{\mathcal{H}(z^N)}(kz^N\overline{f}) : \| H_{\overline{g}} \| = 1 \}.$$

We can rewrite this by using, as in Lemma 4,

$$P_{\mathcal{H}(z^N)}(kz^N\overline{f}) = kz^N\overline{f} - z^N P(k\overline{f}),$$

so

$$(5.3) \quad \overline{g} = z^{-N} P_{\mathcal{H}(z^N)}(kz^N\overline{f}) = k\overline{f} - P(k\overline{f}) = Hf.$$

When $f(z) = a_0 + \cdots + a_N z^N$ and $g(z) = b_1 z + \cdots + b_N z^N$, we let $k(z) = \frac{c_0 + \cdots + c_{N-1} z^{N-1}}{c_N}$ and by using the matrix H in (4.1), we see that $\| H_{\overline{g}} \| = 1$ if and only if the Toeplitz matrix

$$(5.4) \quad \left(\begin{array}{cccccc} c_0 & 0 & 0 & \cdots & 0 \\ c_1 & c_0 & \cdots & \cdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ c_{N-2} & \ddots & \ddots & \ddots & 0 \\ c_{N-1} & c_{N-2} & \cdots & c_1 & c_0 \end{array} \right)$$

has norm 1.

What we have shown here is then seen to be equivalent to what Chô, Curto, and Lee [2] show; specifically, they prove:

Theorem 5. If f is an analytic polynomial of degree N, then G'_f is strictly convex and

$$\text{ext } G'_f = \{ g(z) = b_1 z + \cdots + b_N z^N : \| C \| = 1 \},$$

where C is the Toeplitz matrix in (5.4) corresponding to $\varphi = f + \overline{g} = b_N z^{-N} + \cdots + a_0 + \cdots + a_N z^N$ in the sense that the entries $c_0, c_1, \ldots, c_{N-1}$ must satisfy (5.5) below.

$$(5.5) \quad \left(\begin{array}{cccc} a_1 & a_2 & \cdots & a_{N-1} \\ a_2 & a_3 & \cdots & a_N \\ \vdots & \vdots & \ddots & \vdots \\ a_N & 0 & \cdots & 0 \end{array} \right) \left(\begin{array}{c} c_0 \\ c_1 \\ \vdots \\ c_{N-1} \end{array} \right) = \left(\begin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_N \end{array} \right).$$

Note that (5.5) can be written as $H_{\overline{g}} = \overline{f}$, as in (5.3).

References

DEPARTMENT OF MATHEMATICS, CALIFORNIA POLYTECHNIC STATE UNIVERSITY, SAN LUIS OBISPO, CALIFORNIA 93407
E-mail address: cg@calpoly.edu

DEPARTMENT OF MATHEMATICS, CALIFORNIA POLYTECHNIC STATE UNIVERSITY, SAN LUIS OBISPO, CALIFORNIA 93407
E-mail address: jshapiro@calpoly.edu
URL: http://www.calpoly.edu/~jshapiro