Orthocomplete effect algebras
HTML articles powered by AMS MathViewer
- by Gejza Jenča and Sylvia Pulmannová
- Proc. Amer. Math. Soc. 131 (2003), 2663-2671
- DOI: https://doi.org/10.1090/S0002-9939-03-06990-9
- Published electronically: April 1, 2003
- PDF | Request permission
Abstract:
We prove that for every orthocomplete effect algebra $E$ the center of $E$ forms a complete Boolean algebra. As a consequence, every orthocomplete atomic effect algebra is a direct product of irreducible ones.References
- M. K. Bennett and D. J. Foulis, Phi-symmetric effect algebras, Found. Phys. 25 (1995), no. 12, 1699–1722. MR 1377109, DOI 10.1007/BF02057883
- C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490. MR 94302, DOI 10.1090/S0002-9947-1958-0094302-9
- G. Chevalier and S. Pulmannová, Some ideal lattices in partial abelian monoids and effect algebras, Order 17 (2000), no. 1, 75–92. MR 1776935, DOI 10.1023/A:1006423311104
- Anatolij Dvurečenskij and Sylvia Pulmannová, New trends in quantum structures, Mathematics and its Applications, vol. 516, Kluwer Academic Publishers, Dordrecht; Ister Science, Bratislava, 2000. MR 1861369, DOI 10.1007/978-94-017-2422-7
- D. J. Foulis and M. K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), no. 10, 1331–1352. Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday. MR 1304942, DOI 10.1007/BF02283036
- Roberto Giuntini and Heinz Greuling, Toward a formal language for unsharp properties, Found. Phys. 19 (1989), no. 7, 931–945. MR 1013913, DOI 10.1007/BF01889307
- George Grätzer, Universal algebra, 2nd ed., Springer-Verlag, New York-Heidelberg, 1979. MR 538623
- R. J. Greechie, D. Foulis, and S. Pulmannová, The center of an effect algebra, Order 12 (1995), no. 1, 91–106. MR 1336539, DOI 10.1007/BF01108592
- Eissa D. Habil, Orthosummable orthoalgebras, Internat. J. Theoret. Phys. 33 (1994), no. 10, 1957–1984. MR 1306793, DOI 10.1007/BF00675165
- Samuel S. Holland Jr., An $m$-orthocomplete orthomodular lattice is $m$-complete, Proc. Amer. Math. Soc. 24 (1970), 716–718. MR 256949, DOI 10.1090/S0002-9939-1970-0256949-7
- Jenča, G., A Cantor-Bernstein type theorem for effect algebras, Algebra Universalis (to appear).
- Gejza Jenča, Subcentral ideals in generalized effect algebras, Internat. J. Theoret. Phys. 39 (2000), no. 3, 745–755. Quantum structures ’98 (Liptovský Ján). MR 1792193, DOI 10.1023/A:1003610426013
- Jenča, G., Pulmannová, S., Quotients of partial abelian monoids and the Riesz decomposition property, Algebra Universalis 47 (2002), 443-477.
- František Kôpka and Ferdinand Chovanec, $D$-posets, Math. Slovaca 44 (1994), no. 1, 21–34. MR 1290269
- Daniele Mundici, Interpretation of AF $C^\ast$-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), no. 1, 15–63. MR 819173, DOI 10.1016/0022-1236(86)90015-7
- S. Pulmannová, Congruences in partial abelian semigroups, Algebra Universalis 37 (1997), no. 1, 119–140. MR 1427571, DOI 10.1007/s000120050007
- Sylvia Pulmannová, On connections among some orthomodular structures, Demonstratio Math. 30 (1997), no. 2, 313–328. MR 1469597
- Bernd S. W. Schröder, On three notions of orthosummability in orthoalgebras, Internat. J. Theoret. Phys. 38 (1999), no. 12, 3305–3313. 1997 International Quantum Structures Association (IQSA) Meeting (Atlanta, GA). MR 1764466, DOI 10.1023/A:1026698619399
- Zdenka Riečanová, On proper orthoalgebras, difference posets and abelian relative inverse semigroups, Tatra Mt. Math. Publ. 10 (1997), 119–128. Quantum structures (Liptovský Ján, 1995). MR 1469287
Bibliographic Information
- Gejza Jenča
- Affiliation: Department of Mathematics, Faculty of Electrical Engineering and Information Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia
- Email: jenca@kmat.elf.stuba.sk
- Sylvia Pulmannová
- Affiliation: Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia
- Email: pulmann@mat.savba.sk
- Received by editor(s): April 3, 2002
- Published electronically: April 1, 2003
- Additional Notes: This research was supported by grant G-1/7625/20 of MŠ SR, Slovakia and grant VEGA 2/7193/20
- Communicated by: Lance W. Small
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2663-2671
- MSC (2000): Primary 06F05; Secondary 03G25, 81P10
- DOI: https://doi.org/10.1090/S0002-9939-03-06990-9
- MathSciNet review: 1974321