$L^p$ versions of Hardy’s uncertainty principle on hyperbolic spaces
HTML articles powered by AMS MathViewer
- by Nils Byrial Andersen
- Proc. Amer. Math. Soc. 131 (2003), 2797-2807
- DOI: https://doi.org/10.1090/S0002-9939-03-07006-0
- Published electronically: February 28, 2003
- PDF | Request permission
Abstract:
Hardy’s uncertainty principle states that it is impossible for a function and its Fourier transform to be simultaneously very rapidly decreasing. In this paper we prove $L^p$ versions of this principle for the Jacobi transform and for the Fourier transform on real hyperbolic spaces.References
- Nils Byrial Andersen, Paley-Wiener theorems for hyperbolic spaces, J. Funct. Anal. 179 (2001), no. 1, 66–119. MR 1807253, DOI 10.1006/jfan.2000.3682
- N. B. Andersen, Hardy’s uncertainty principle on Hyperbolic Spaces, Bull. Austral. Math. Soc. 66 (2002), 163–170.
- Erik P. van den Ban and Henrik Schlichtkrull, Expansions for Eisenstein integrals on semisimple symmetric spaces, Ark. Mat. 35 (1997), no. 1, 59–86. MR 1443036, DOI 10.1007/BF02559593
- Michael G. Cowling and John F. Price, Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality, SIAM J. Math. Anal. 15 (1984), no. 1, 151–165. MR 728691, DOI 10.1137/0515012
- M. Cowling, A. Sitaram, and M. Sundari, Hardy’s uncertainty principle on semisimple groups, Pacific J. Math. 192 (2000), no. 2, 293–296. MR 1744570, DOI 10.2140/pjm.2000.192.293
- G. Beĭtmen, Vysshie transtsendentnye funktsii. I: Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Second unrevised edition, Izdat. “Nauka”, Moscow, 1973 (Russian). Translated from the English by N. Ja. Vilenkin. MR 0344526
- Mogens Flensted-Jensen, Spherical functions on a simply connected semisimple Lie group. II. The Paley-Wiener theorem for the rank one case, Math. Ann. 228 (1977), no. 1, 65–92. MR 458064, DOI 10.1007/BF01360773
- G. H. Hardy, A theorem concerning Fourier transforms, J. London Math. Soc. 8 (1933), 227–231.
- Gerrit Heckman and Henrik Schlichtkrull, Harmonic analysis and special functions on symmetric spaces, Perspectives in Mathematics, vol. 16, Academic Press, Inc., San Diego, CA, 1994. MR 1313912
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- Sigurdur Helgason, Geometric analysis on symmetric spaces, Mathematical Surveys and Monographs, vol. 39, American Mathematical Society, Providence, RI, 1994. MR 1280714, DOI 10.1090/surv/039
- Lars Hörmander, A uniqueness theorem of Beurling for Fourier transform pairs, Ark. Mat. 29 (1991), no. 2, 237–240. MR 1150375, DOI 10.1007/BF02384339
- Tom Koornwinder, A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Mat. 13 (1975), 145–159. MR 374832, DOI 10.1007/BF02386203
- Tom H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, pp. 1–85. MR 774055
- E. K. Narayanan and S. K. Ray, $L^p$ version of Hardy’s theorem on semisimple Lie groups, Proc. Amer. Math. Soc. 130 (2002), no. 6, 1859–1866. MR 1887035, DOI 10.1090/S0002-9939-02-06272-X
- Wulf Rossmann, Analysis on real hyperbolic spaces, J. Functional Analysis 30 (1978), no. 3, 448–477. MR 518343, DOI 10.1016/0022-1236(78)90065-4
- J. Sengupta, The uncertainty principle on Riemannian symmetric spaces of the noncompact type, Proc. Amer. Math. Soc. 130 (2002), no. 4, 1009–1017. MR 1873774, DOI 10.1090/S0002-9939-01-06318-3
- A. Sitaram and M. Sundari, An analogue of Hardy’s theorem for very rapidly decreasing functions on semi-simple Lie groups, Pacific J. Math. 177 (1997), no. 1, 187–200. MR 1444779, DOI 10.2140/pjm.1997.177.187
Bibliographic Information
- Nils Byrial Andersen
- Affiliation: School of Mathematics, University of New South Wales, Sydney, NSW 2052, Australia
- Email: byrial@maths.unsw.edu.au
- Received by editor(s): April 3, 2002
- Published electronically: February 28, 2003
- Additional Notes: The author was supported by a postdoctoral grant from the Australian Research Council (ARC)
- Communicated by: Rebecca Herb
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2797-2807
- MSC (2000): Primary 43A85, 22E30
- DOI: https://doi.org/10.1090/S0002-9939-03-07006-0
- MathSciNet review: 1974337