On the denseness of the invertible group in Banach algebras
HTML articles powered by AMS MathViewer
- by T. W. Dawson and J. F. Feinstein
- Proc. Amer. Math. Soc. 131 (2003), 2831-2839
- DOI: https://doi.org/10.1090/S0002-9939-03-07058-8
- Published electronically: April 7, 2003
- PDF | Request permission
Abstract:
We examine the condition that a complex Banach algebra $A$ has dense invertible group. We show that, for commutative algebras, this property is preserved by integral extensions. We also investigate the connections with an old problem in the theory of uniform algebras.References
- Béla Bollobás, Linear analysis, 2nd ed., Cambridge University Press, Cambridge, 1999. An introductory course. MR 1711398, DOI 10.1017/CBO9781139168472
- N. Bourbaki, Algebra. II. Chapters 4–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1990. Translated from the French by P. M. Cohn and J. Howie. MR 1080964
- Cole, B. J. (1968): ‘One-Point Parts and the Peak Point Conjecture’, Ph.D. Thesis, Yale University.
- Cole, B. J. (2002): Private communication.
- Gustavo Corach and Fernando D. Suárez, Thin spectra and stable range conditions, J. Funct. Anal. 81 (1988), no. 2, 432–442. MR 971887, DOI 10.1016/0022-1236(88)90107-3
- H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs. New Series, vol. 24, The Clarendon Press, Oxford University Press, New York, 2000. Oxford Science Publications. MR 1816726
- C. M. Falcón Rodríguez, The denseness of the group of invertible elements of a uniform algebra, Cienc. Mat. (Havana) 9 (1988), no. 2, 11–17 (Spanish, with English summary). MR 1007646
- Joel F. Feinstein, A nontrivial, strongly regular uniform algebra, J. London Math. Soc. (2) 45 (1992), no. 2, 288–300. MR 1171556, DOI 10.1112/jlms/s2-45.2.288
- J. F. Feinstein and D. W. B. Somerset, Strong regularity for uniform algebras, Function spaces (Edwardsville, IL, 1998) Contemp. Math., vol. 232, Amer. Math. Soc., Providence, RI, 1999, pp. 139–149. MR 1678328, DOI 10.1090/conm/232/03392
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417, DOI 10.1007/978-0-8176-4771-1
- S. A. Grigoryan, Polynomial extensions of commutative Banach algebras, Uspekhi Mat. Nauk 39 (1984), no. 1(235), 129–130 (Russian). MR 733964
- Osamu Hatori and Takeshi Miura, On a characterization of the maximal ideal spaces of commutative $C^*$-algebras in which every element is the square of another, Proc. Amer. Math. Soc. 128 (2000), no. 4, 1185–1189. MR 1690991, DOI 10.1090/S0002-9939-99-05454-4
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Henkin, G. M. and Čirka, E. M. (1976): ‘Boundary Properties of Holomorphic Functions of Several Complex Variables’, J. Soviet Math., 5, no. 5, 612-687.
- Jacobson, N. (1996) ‘Basic Algebra I’ (2nd ed.) New York: W. H. Freeman and Company.
- M. I. Karahanjan, Some algebraic characterizations of the algebra of all continuous functions on a locally connected compactum, Mat. Sb. (N.S.) 107(149) (1978), no. 3, 416–434, 463 (Russian). MR 515739
- Gerald M. Leibowitz, Lectures on complex function algebras, Scott, Foresman & Co., Glenview, Ill., 1970. MR 0428042
- John A. Lindberg Jr., Integral extensions of commutative Banach algebras, Canadian J. Math. 25 (1973), 673–686. MR 331066, DOI 10.4153/CJM-1973-068-2
- Theodore W. Palmer, Banach algebras and the general theory of $^*$-algebras. Vol. I, Encyclopedia of Mathematics and its Applications, vol. 49, Cambridge University Press, Cambridge, 1994. Algebras and Banach algebras. MR 1270014, DOI 10.1017/CBO9781107325777
- A. R. Pears, Dimension theory of general spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. MR 0394604
- Marc A. Rieffel, Dimension and stable rank in the $K$-theory of $C^{\ast }$-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301–333. MR 693043, DOI 10.1112/plms/s3-46.2.301
- Guyan Robertson, On the density of the invertible group in $C^*$-algebras, Proc. Edinburgh Math. Soc. (2) 20 (1976), no. 2, 153–157. MR 417797, DOI 10.1017/S001309150001066X
- Edgar Lee Stout, The theory of uniform algebras, Bogden & Quigley, Inc., Publishers, Tarrytown-on-Hudson, N.Y., 1971. MR 0423083
Bibliographic Information
- T. W. Dawson
- Affiliation: Division of Pure Mathematics, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
- Email: pmxtwd@nottingham.ac.uk
- J. F. Feinstein
- Affiliation: Division of Pure Mathematics, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
- MR Author ID: 288617
- Email: Joel.Feinstein@nottingham.ac.uk
- Received by editor(s): April 4, 2002
- Published electronically: April 7, 2003
- Additional Notes: The first author thanks the EPSRC for providing support for this research
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2831-2839
- MSC (2000): Primary 46J10, 46H05
- DOI: https://doi.org/10.1090/S0002-9939-03-07058-8
- MathSciNet review: 1974340