DIVERGENT CESÀRO AND RIESZ MEANS OF JACOBI AND LAGUERRE EXPANSIONS

CHRISTOPHER MEANEY

(Communicated by Andreas Seeger)

Abstract. We show that for δ below certain critical indices there are functions whose Jacobi or Laguerre expansions have almost everywhere divergent Cesàro and Riesz means of order δ.

1. Introduction

1.1. Orthogonal expansions. Suppose that (X, μ) is a positive measure space, $(\varphi_n)_{n=0}^{\infty}$ is an orthogonal subset of $L^2(X, \mu)$, and $h_n = \|\varphi_n\|_2^2$ for all $n \geq 0$. If f is a function on X for which all the products $f\varphi_n$ are μ-integrable, then f has an orthogonal expansion

$$
\sum_{n=0}^{\infty} c_n(f)h_n^{-1}\varphi_n(x)
$$

with coefficients

$$
c_n(f) = \int_X f(x)\varphi_n(x)\,d\mu(x), \quad \forall n \geq 0.
$$

1.2. Cesàro means. As described in Zygmund’s book [16, pp. 76–77], the Cesàro means of order δ of the expansion (1) are defined by

$$
\sigma^\delta_N f(x) = \sum_{n=0}^{N} A^\delta_{N-n} A^\delta_N c_n(f)h_n^{-1}\varphi_n(x),
$$

where $A^\delta_n = \binom{n+\delta}{n}$. Theorem 3.1.22 in [16] says that if the Cesàro means converge, then the terms of the series have controlled growth.

Lemma 1.1. Suppose that $\lim_{N \to \infty} \sigma^\delta_N f(x)$ exists for some $x \in X$ and $\delta > -1$. Then

$$
|c_N(f)h_N^{-1}\varphi_N(x)| \leq C_\delta N^\delta \max_{0 \leq n \leq N} |\sigma^\delta_n f(x)|, \quad \forall N \geq 0.
$$
1.3. **Riesz means.** Hardy and Riesz [6] had proved a similar result for Riesz means. Recall that the Riesz means of order $\delta \geq 0$ are defined for each $r > 0$ by

$$S_r^\delta f(x) = \sum_{0 \leq n < r} \left(1 - \frac{n}{r}\right)^\delta c_n(f) h_n^{-1} \varphi_n(x).$$

Theorem 21 of [6] tells us how the convergence of $S_r^\delta f(x)$ controls the size of the partial sums $S_r^0 f(x)$.

Lemma 1.2. Suppose that f has an orthogonal expansion and for some $\delta > 0$ and $x \in X$ its Riesz means $S_r^\delta f(x)$ converges to c as $r \to \infty$. Then

$$|S_r^\delta f(x) - c| \leq A_\delta r^\delta \sup_{0 < t \leq r+1} |S_t^0 f(x)|.$$

Note that we can write

$$c_n(f) h_n^{-1} \varphi_n(x) = (S_n^0 f(x) - c) - (S_n^0 f(x) - c) = O(n^\delta)$$

and obtain the same growth estimates as in Lemma 1.1.

Gergen [5] wrote formulae relating the Riesz and Cesàro means of order $\delta \geq 0$, from which the equivalence of the two methods of summation follows.

1.4. **Uniform boundedness.** Suppose there is a $1 < q \leq \infty$ for which $\varphi_n \in L^q(X, \mu)$ for all n. In addition, suppose that there is some positive number λ with

$$\|\varphi_n\|_q \geq cn^\lambda, \quad \forall n \geq 1.$$

The formation of the coefficient $f \mapsto c_n(f)$ is then a bounded linear functional on the dual of $L^q(X, \mu)$ with norm bounded below by a constant multiple of n^λ. The uniform boundedness principle implies that for p conjugate to q and each $0 \leq \varepsilon < \lambda$ there is an $f \in L^p(X, \mu)$ so that

$$c_n(f)/n^\varepsilon \to \infty \text{ as } n \to \infty.$$

1.5. **Cantor-Lebesgue Theorem.** The following argument is based on [16] Section IX.1. Suppose we have a sequence of functions F_n on an interval in the real line with the asymptotic property

$$F_n(\theta) = c_n(\cos(M_n \theta + \gamma_n) + o(1)), \quad \forall n \geq 0,$$

uniformly on a set E of finite positive measure, and with $M_n \to \infty$ as $n \to \infty$. Integrating $|F_n|^2$ over E gives

$$\int_E |F_n(\theta)|^2 \, d\theta = |c_n|^2 \left(\int_E \cos^2(M_n \theta + \gamma_n) \, d\theta + o(1) \right) = |c_n|^2 \left(\frac{|E|}{2} + \frac{e^{2i\gamma_n}}{4} \chi_E(2M_n) + \frac{e^{-2i\gamma_n}}{4} \chi_E(-2M_n) + o(1) \right).$$

The Riemann-Lebesgue Theorem [16] Thm. II.4.4] says that the Fourier transforms $\hat{\chi}_E(\pm 2M_n) \to 0$ as $M_n \to \infty$. If we know that there is some function G for which $|F_n(\theta)| \leq G(n)$ uniformly on E for all n, then there is an $n_0 > 0$ for which

$$\frac{|E|}{4} |c_n|^2 \leq \int_E |F_n(\theta)|^2 \, d\theta \leq G(n)^2 |E|, \quad \forall n \geq n_0.$$

This shows that $|c_n| \leq 2G(n)$ for all $n \geq n_0$.

2. Jacobi polynomials

2.1. Notation. Fix real numbers \(\alpha \geq \beta \geq -1/2 \), with \(\alpha > -1/2 \), and let \(\mu \) denote the measure on \([-1, 1]\) defined by
\[
d\mu(x) = (1 - x)^\alpha (1 + x)^\beta \, dx.
\]
Let \(P_n^{(\alpha, \beta)}(x) \) be the Jacobi polynomial of degree \(n \) associated to the pair \((\alpha, \beta)\) as in Szegö’s book [15]. Then \(\left(P_n^{(\alpha, \beta)} \right)_{n=0}^\infty \) is an orthogonal subset of \(L^2([-1, 1], \mu) \).

Equation (43.3) in [15] shows that the normalization terms \(h_n^{(\alpha, \beta)} = \| P_n^{(\alpha, \beta)} \|_2^2 \) satisfy
\[
h_n^{(\alpha, \beta)} \sim c_{\alpha, \beta} n^{-1} \quad \text{as} \quad n \to \infty.
\]
The Jacobi polynomial expansion of \(f \in L^1(\mu) \) is
\[
\sum_{n=0}^\infty c_n(f) \left(h_n^{(\alpha, \beta)} \right)^{-1} P_n^{(\alpha, \beta)}(x),
\]
with coefficients \(c_n(f) = \int_{-1}^1 f(x) P_n^{(\alpha, \beta)}(x) \, d\mu(x) \). We take \(\alpha \) and \(\beta \) as fixed and use \(\sigma_n^\alpha f(x) \) and \(\sigma_n^\beta f(x) \) to denote the Cesàro and Riesz means of this expansion, respectively.

Lemma 2.1. For \(\alpha \geq \beta \geq -1/2 \) and \(\varepsilon > 0 \) the following estimate holds uniformly for all \(\varepsilon \leq \theta \leq \pi - \varepsilon \) and \(n \geq 1 \):
\[
P_n^{(\alpha, \beta)}(\cos \theta) = n^{-1/2} k(\theta) \cos (M_n \theta + \gamma) + O \left(n^{-3/2}\right).
\]
Here \(k(\theta) = \pi^{-1/2} \left(\sin(\theta/2) \right)^{\alpha-1/2} \left(\cos(\theta/2) \right)^{-\beta-1/2} \), \(M_n = n + (\alpha + \beta + 1)/2 \), and \(\gamma = -(\alpha + 1/2) \pi/2 \).

From Egoroff’s theorem and Lemma [14] we can see that if \(\sigma_n^\alpha f(x) \) converges on a set of positive measure in \([-1, 1]\), then there is a set of positive measure \(E \) on which
\[
\left| c_n n^{(1/2)-\delta} \left(\cos (M_n \theta + \gamma) + O(n^{-1}) \right) \right| \leq A
\]
uniformly for \(\cos \theta \in E \). The argument of subsection [1.5] shows that
\[
\left| c_n n^{(1/2)-\delta} \right| \leq A, \quad \forall n \geq 1.
\]

2.3. Norm estimates. Next we recall the calculation of Lebesgue norms of Jacobi polynomials, according to Markett [10] and Dreseler and Soardi [4]. Equation (2.2) in [10] gives the following lower bounds on these norms.

Lemma 2.2. For real numbers \(\alpha \geq \beta \geq -1/2 \), with \(\alpha > -1/2 \), \(1 \leq q < \infty \), and \(r > -1/q \),
\[
\left(\int_0^1 \left| P_n^{(\alpha, \beta)}(x) (1-x)^r \right|^q \, dx \right)^{1/q} \sim \begin{cases} n^{-1/2} & \text{if } r > \alpha/2 + 1/4 - 1/q, \\ n^{-1/2} (\log n)^{1/q} & \text{if } r = \alpha/2 + 1/4 - 1/q, \\ n^{\alpha - 2r - 2/q} & \text{if } r < \alpha/2 + 1/4 - 1/q. \end{cases}
\]
2.4. Main result. There are critical indices, as used in [11],
\[p_c = \frac{4(\alpha + 1)}{2\alpha + 3} \quad \text{and its conjugate} \quad p'_c = \frac{4(\alpha + 1)}{2\alpha + 1}. \]
Taking \(r = \alpha/q \) in Lemma 2.2 we have that
\[n^{\alpha - 2\alpha/q - 2} \]
for \(\alpha/q < \alpha/2 + 1/4 - 1/q \). This last inequality can be rewritten as
\[q > \frac{4(\alpha + 1)}{\alpha + 1} = p'_c. \]
We can now prove that below the critical index there are functions with almost everywhere divergent Cesaro and Riesz means.

Theorem 2.3. For real numbers \(\alpha \geq \beta \geq -1/2 \), with \(\alpha > -1/2 \),
\[1 \leq p < p_c = \frac{4(\alpha + 1)}{2\alpha + 3}, \quad \text{and} \quad 0 \leq \delta < \frac{(2\alpha + 2)}{p} - \frac{(2\alpha + 3)}{2}, \]
there is an \(f \in L^p(\mu) \), supported in \([0, 1]\), whose Cesaro means \(\sigma_{N}^\delta f(x) \) and Riesz means \(S_{\delta}^\mu f(x) \) are divergent almost everywhere on \([-1, 1]\).

Proof. Let \(q \) be conjugate to \(p \), so that \(1/p = (q - 1)/q \). Suppose that
\[\delta < \frac{(2\alpha + 2)}{p} \quad \text{and} \quad 0 \leq \frac{(2\alpha + 3)}{2} \]
Then
\[\delta + \frac{1}{2} < \frac{2\alpha + 2}{p} - \frac{2\alpha - 2}{q} \]
which is the exponent of \(n \) in the inequality (10). Now apply the argument given in subsection 1.4. The norms of the Jacobi polynomials in Lemma 2.2 are calculated over \([0, 1]\) and so we can find \(f \) in \(L^p([-1, 1], \mu) \), supported on \([0, 1]\), for which the coefficients satisfy
\[c_n(f)/n^{\delta - 1/2} \rightarrow \infty, \quad \text{as} \quad n \rightarrow \infty. \]
Combine this with Lemmas 1.1 and 1.2 and the argument around inequality (9) to see that for this \(f \) both \(\sigma_{N}^\delta f(x) \) and \(S_{\delta}^\mu f(x) \) are divergent almost everywhere. This argument follows the methods used in [11, 8, 7, 12].

2.5. Remarks. Convergence results above the critical index are contained in the work of Bonami and Clerc [1], Colzani, Taibleson and Weiss [3], and Chanillo and Muckenhoupt [2]. In particular, in [2, Thm. 1.4] it is shown that for
\[1 \leq p < p_c = \frac{4(\alpha + 1)}{2\alpha + 3} \quad \text{and} \quad \delta = \frac{(2\alpha + 2)}{p} - \frac{(2\alpha + 3)}{2}, \]
the maximal operator \(f \mapsto \sup_{N \geq 0} |\sigma_{N}^\delta f(x)| \) is of weak type \((p, p)\).

For \(\delta = 0 \) and \(p = p_c \), divergence was proved in [11].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
3. Laguerre Functions

3.1. Notation. For each \(\alpha > -1 \) let \(\mu_\alpha \) be the measure on \([0, \infty)\) defined by
\[
d\mu_\alpha(x) = e^{-x}x^\alpha \, dx.
\]
We denote by \(L_n^{(\alpha)}(x) \) the Laguerre polynomial of degree \(n \), as in [15, Chpt. 5].
The \(L^2(\mu_\alpha) \)-norms of these satisfy the identity
\[
h_n^{(\alpha)} = \| L_n^{(\alpha)} \|_{L^2(\mu_\alpha)}^2 = \Gamma(\alpha + 1) \binom{n + \alpha}{n} \sim n^\alpha.
\]
Fejér's formula [15, Thm. 8.22.1] gives the asymptotic properties of these polynomials. For each \(\alpha > 1 \) and \(0 < \varepsilon < \omega \),
\[
L_n^{(\alpha)}(x) = \frac{e^{x/2}}{\pi^{1/2}x^{\alpha/2}} n^{\alpha/2-1/4} \cos \left(2(n\varepsilon)^{1/2} - \alpha\pi/2 - \pi/4\right) + O\left(n^{\alpha/2-3/4}\right),
\]
uniformly in \(x \in [\varepsilon, \omega] \). The corresponding normalized functions are
\[
L_n^{(\alpha)}(x) = \sqrt{\frac{(n+1)}{\Gamma(n+\alpha+1)}} e^{-x/2}x^{\alpha/2} L_n^{(\alpha)}(x), \quad \forall x \geq 0, n \geq 0.
\]
These provide an orthonormal subset of \(L^2([0, \infty)) \), where the half line carries Lebesgue measure.

3.2. Norm estimates. Markett [9, Lemma 1] has calculated the Lebesgue norms of the Laguerre functions, for \(\alpha > -1/2 \),
\[
\| L_n^{(\alpha)} \|_q \sim \begin{cases} n^{1/q-1/2}, & \forall \ 1 \leq q < 4, \\ n^{-1/4}(|\log n|)^{1/4}, & \text{if } q = 4, \\ n^{-1/q}, & \forall \ 4 < q \leq \infty.
\end{cases}
\]

3.3. Divergence result.

Theorem 3.1. If \(\alpha > -1/2 \), \(p > 4 \) and \(0 < \delta < 1/4 - 1/p \), then there is a function \(f \in L^p(0, \infty) \) whose Laguerre expansion
\[
\sum_{n=0}^{\infty} c_n(f) L_n^{(\alpha)}(x)
\]
has Cesàro and Riesz means of order \(\delta \) which diverge almost everywhere.

Proof. Suppose that the expansion \(\sum_{n=0}^{\infty} c_n(f) L_n^{(\alpha)}(x) \) is either Cesàro or Riesz summable of order \(\delta \) on a set of positive measure in \([0, \infty)\). Then Lemma 1.1 or Lemma 1.2 implies that
\[
c_n(f) L_n^{(\alpha)}(x) = O(n^\delta)
\]
on a set of positive measure. When equations (12) and (13) are combined with the argument of subsection 1.5 we find that
\[
c_n(f) = O(n^{\delta+1/4}).
\]
The case when \(\delta = 0 \) is Lemma 2.3 in Stempak’s paper [14]. Suppose that
\[
\frac{1}{q} - \frac{1}{2} > \delta + \frac{1}{4},
\]
so that \(\delta < \frac{1}{2} - \frac{3}{q^2} = \frac{1-3q}{q^2} \). If \(\frac{1}{q} = 1 - \frac{1}{p} \), then this inequality is \(\delta < \frac{1}{2} - \frac{1}{p} \). The argument of subsection 1.4 shows that if \(p > 4 \) and \(\delta < 1/4 - 1/p \), then there is a function \(f \in L^p(0, \infty) \) for which the inequality (16) fails,

\[
c_n(f)/n^{\delta+1/4} \to \infty \quad \text{as} \quad n \to \infty.
\]

The Laguerre expansion of this function has Cesàro and Riesz means of order \(\delta \) which diverge almost everywhere.

3.4. Remarks.

There is an extensive treatment of almost everywhere convergence results for Laguerre expansions in [12]. In particular, [13, Thm. 1.20] implies that if \(p > 4 \) and \(\delta \geq 1/4 - 1/p \), then all \(f \in L^p(0, \infty) \) have almost everywhere convergent Cesàro means of order \(\delta \).

References

Department of Mathematics, Macquarie University, North Ryde, New South Wales 2109, Australia

E-mail address: chrism@maths.mq.edu.au