Divergent Cesàro and Riesz means of Jacobi and Laguerre expansions
HTML articles powered by AMS MathViewer
- by Christopher Meaney
- Proc. Amer. Math. Soc. 131 (2003), 3123-3128
- DOI: https://doi.org/10.1090/S0002-9939-02-06853-3
- Published electronically: December 30, 2002
- PDF | Request permission
Abstract:
We show that for $\delta$ below certain critical indices there are functions whose Jacobi or Laguerre expansions have almost everywhere divergent Cesàro and Riesz means of order $\delta$.References
- Aline Bonami and Jean-Louis Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223–263 (French). MR 338697, DOI 10.1090/S0002-9947-1973-0338697-5
- Sagun Chanillo and Benjamin Muckenhoupt, Weak type estimates for Cesàro sums of Jacobi polynomial series, Mem. Amer. Math. Soc. 102 (1993), no. 487, viii+90. MR 1132609, DOI 10.1090/memo/0487
- Leonardo Colzani, Mitchell H. Taibleson, and Guido Weiss, Maximal estimates for Cesàro and Riesz means on spheres, Indiana Univ. Math. J. 33 (1984), no. 6, 873–889. MR 763947, DOI 10.1512/iumj.1984.33.33047
- B. Dreseler and P. M. Soardi, A Cohen-type inequality for Jacobi expansions and divergence of Fourier series on compact symmetric spaces, J. Approx. Theory 35 (1982), no. 3, 214–221. MR 663667, DOI 10.1016/0021-9045(82)90003-X
- J.J. Gergen, Summability of double Fourier series, Duke Math. J. 3 (1937), 133–148.
- G. H. Hardy and M. Riesz, A general theory of Dirichlet series, Cambridge University Press, Cambridge, 1915.
- Yūichi Kanjin, Convergence almost everywhere of Bochner-Riesz means for radial functions, Ann. Sci. Kanazawa Univ. 25 (1988), 11–15. MR 964084
- Yūichi Kanjin, Convergence and divergence almost everywhere of spherical means for radial functions, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1063–1069. MR 954984, DOI 10.1090/S0002-9939-1988-0954984-8
- C. Markett, Mean Cesàro summability of Laguerre expansions and norm estimates with shifted parameter, Anal. Math. 8 (1982), no. 1, 19–37 (English, with Russian summary). MR 662701, DOI 10.1007/BF02073769
- C. Markett, Cohen type inequalities for Jacobi, Laguerre and Hermite expansions, SIAM J. Math. Anal. 14 (1983), no. 4, 819–833. MR 704495, DOI 10.1137/0514063
- Christopher Meaney, Divergent Jacobi polynomial series, Proc. Amer. Math. Soc. 87 (1983), no. 3, 459–462. MR 684639, DOI 10.1090/S0002-9939-1983-0684639-4
- Christopher Meaney and Elena Prestini, Bochner-Riesz means on symmetric spaces, Tohoku Math. J. (2) 50 (1998), no. 4, 557–570. MR 1653434, DOI 10.2748/tmj/1178224898
- Benjamin Muckenhoupt and David W. Webb, Two-weight norm inequalities for Cesàro means of Laguerre expansions, Trans. Amer. Math. Soc. 353 (2001), no. 3, 1119–1149. MR 1804415, DOI 10.1090/S0002-9947-00-02729-X
- Krzysztof Stempak, Divergent Laguerre series, Proc. Amer. Math. Soc. 129 (2001), no. 4, 1123–1126. MR 1709766, DOI 10.1090/S0002-9939-00-05657-4
- Gábor Szegő, Orthogonal polynomials, 3rd ed., American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, R.I., 1967. MR 0310533
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Bibliographic Information
- Christopher Meaney
- Affiliation: Department of Mathematics, Macquarie University, North Ryde, New South Wales 2109, Australia
- Email: chrism@maths.mq.edu.au
- Received by editor(s): February 26, 2002
- Received by editor(s) in revised form: April 29, 2002
- Published electronically: December 30, 2002
- Communicated by: Andreas Seeger
- © Copyright 2002 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3123-3128
- MSC (2000): Primary 42C05, 33C45, 42C10
- DOI: https://doi.org/10.1090/S0002-9939-02-06853-3
- MathSciNet review: 1992852