Modular group algebras of $\aleph _{1}$-separable $p$-groups
HTML articles powered by AMS MathViewer
- by Rüdiger Göbel and Warren May
- Proc. Amer. Math. Soc. 131 (2003), 2987-2992
- DOI: https://doi.org/10.1090/S0002-9939-03-06818-7
- Published electronically: January 2, 2003
- PDF | Request permission
Abstract:
Under the assumptions of MA and $\neg$ CH, it is proved that if $F$ is a field of prime characteristic $p$ and $G$ is an $\aleph _{1}$-separable abelian $p$-group of cardinality $\aleph _{1}$, then an isomorphism of the group algebras $FG$ and $FH$ implies an isomorphism of $G$ and $H$.References
- S. D. Berman, Group algebras of countable abelian $p$-groups, Publ. Math. Debrecen 14 (1967), 365–405 (Russian). MR 225897, DOI 10.5486/pmd.1967.14.1-4.40
- S. D. Berman and T. Ž. Mollov, The group rings of abelian $p$-groups of arbitrary power, Mat. Zametki 6 (1969), 381–392 (Russian). MR 254155
- Peter Crawley, The cancellation of torsion abelian groups in direct sums, J. Algebra 2 (1965), 432–442. MR 188293, DOI 10.1016/0021-8693(65)90004-9
- Paul C. Eklof, The structure of $\omega _{1}$-separable groups, Trans. Amer. Math. Soc. 279 (1983), no. 2, 497–523. MR 709565, DOI 10.1090/S0002-9947-1983-0709565-8
- Paul C. Eklof and Alan H. Mekler, On endomorphism rings of $\omega _{1}$-separable primary groups, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 320–339. MR 722627, DOI 10.1007/BFb0103711
- Paul C. Eklof and Alan H. Mekler, Almost free modules, North-Holland Mathematical Library, vol. 46, North-Holland Publishing Co., Amsterdam, 1990. Set-theoretic methods. MR 1055083
- Walter Leighton and W. T. Scott, A general continued fraction expansion, Bull. Amer. Math. Soc. 45 (1939), 596–605. MR 41, DOI 10.1090/S0002-9904-1939-07046-8
- R. Göbel, W. May, Cancellation of direct sums of countable abelian $p$-groups, to appear.
- Paul Hill and William Ullery, A note on a theorem of May concerning commutative group algebras, Proc. Amer. Math. Soc. 110 (1990), no. 1, 59–63. MR 1039530, DOI 10.1090/S0002-9939-1990-1039530-4
- Martin Huber, Methods of set theory and the abundance of separable abelian $p$-groups, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 304–319. MR 722626, DOI 10.1007/BFb0103710
- Gregory Karpilovsky, Commutative group algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 78, Marcel Dekker, Inc., New York, 1983. MR 704185
- Warren May, Commutative group algebras, Trans. Amer. Math. Soc. 136 (1969), 139–149. MR 233903, DOI 10.1090/S0002-9947-1969-0233903-9
- Warren May, The direct factor problem for modular abelian group algebras, Representation theory, group rings, and coding theory, Contemp. Math., vol. 93, Amer. Math. Soc., Providence, RI, 1989, pp. 303–308. MR 1003359, DOI 10.1090/conm/093/1003359
Bibliographic Information
- Rüdiger Göbel
- Affiliation: Fachbereich 6, Mathematik und Informatik, Universität Essen, Universitätsstraße 3, D-45117 Essen, Germany
- Email: R.Goebel@uni-essen.de
- Warren May
- Affiliation: Department of Mathematics, University of Arizona, Tucson, Arizona 85721
- Email: may@math.arizona.edu
- Received by editor(s): January 25, 2002
- Received by editor(s) in revised form: April 18, 2002
- Published electronically: January 2, 2003
- Communicated by: Stephen D. Smith
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2987-2992
- MSC (2000): Primary 20K10, 20C07; Secondary 20K25, 16S34
- DOI: https://doi.org/10.1090/S0002-9939-03-06818-7
- MathSciNet review: 1993203