A note on the spectrum of an upper triangular operator matrix
HTML articles powered by AMS MathViewer
- by Mohamed Barraa and Mohamed Boumazgour
- Proc. Amer. Math. Soc. 131 (2003), 3083-3088
- DOI: https://doi.org/10.1090/S0002-9939-03-06862-X
- Published electronically: January 28, 2003
- PDF | Request permission
Abstract:
Let $M_C= [\begin {smallmatrix} A& C 0 & B \end {smallmatrix}]$ be a $2\times 2$ upper triangular operator matrix acting on the Banach space $E\oplus F$. We investigate the set of the operators $C$ for which $\sigma (M_C)=\sigma (A)\cup \sigma (B)$, where $\sigma (.)$ denotes the spectrum.References
- Hong Ke Du and Pan Jin, Perturbation of spectrums of $2\times 2$ operator matrices, Proc. Amer. Math. Soc. 121 (1994), no. 3, 761–766. MR 1185266, DOI 10.1090/S0002-9939-1994-1185266-2
- Lawrence A. Fialkow, A note on the range of the operator $X\rightarrow AX-XB$, Illinois J. Math. 25 (1981), no. 1, 112–124. MR 602902
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR 675952
- Jin Kyu Han, Hong Youl Lee, and Woo Young Lee, Invertible completions of $2\times 2$ upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (2000), no. 1, 119–123. MR 1618686, DOI 10.1090/S0002-9939-99-04965-5
Bibliographic Information
- Mohamed Barraa
- Affiliation: Département de Mathématiques, Faculté des Sciences Semlalia, B.P 2390, Marrakech, Maroc
- Email: barraa@hotmail.com
- Mohamed Boumazgour
- Affiliation: Département de Mathématiques, Faculté des Sciences Semlalia, B.P 2390, Marrakech, Maroc
- Address at time of publication: Département de Mathématiques et Statistique, Pavillon Alexandre Vachon, Université Laval, Québec, Canada G1K 7P4
- Email: boumazgour@ucam.ac.ma, boumazgo@mat.ulaval.ca
- Received by editor(s): March 1, 2002
- Received by editor(s) in revised form: April 23, 2002
- Published electronically: January 28, 2003
- Communicated by: Joseph A. Ball
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3083-3088
- MSC (1991): Primary 47A10, 47A55, 47B47
- DOI: https://doi.org/10.1090/S0002-9939-03-06862-X
- MathSciNet review: 1993217