THE MINIMUM NUMBER OF ACUTE DIHEDRAL ANGLES OF A SIMPLEX

GANGSONG LENG

(Communicated by Wolfgang Ziller)

Abstract. For any n-dimensional simplex $\Omega \subset \mathbb{R}^n$, we confirm a conjecture of Klamkin and Pook (1988) that there are always at least n acute dihedral angles in Ω.

Let Ω be an n-simplex in \mathbb{R}^n with vertices $A_1, A_2, \cdots, A_{n+1}$ (i.e., $\Omega = \langle A_1, A_2, \cdots, A_{n+1} \rangle$), let $\Omega_i = \langle A_1, \cdots, A_{i-1}, A_{i+1}, \cdots, A_{n+1} \rangle$ denote its facet which lies in a hyperplane π_i, and let e_i be the unit outer normal vector of π_i ($i = 1, 2, \cdots, n+1$). Denote by θ_{ij} the supplement of the angle between e_i and e_j; we call θ_{ij} the dihedral angle between i and j.

Obviously, for any n-simplex, there exist $\binom{n+1}{2}$ dihedral angles. In [1], Klamkin shows that there are always at least three acute dihedral angles in any tetrahedron. Further, he posed the question: can one generalize this result to an n-simplex? Pook [1] conjectures that n is the required minimum number of acute dihedral angles in any n-simplex.

In this paper, we confirm this supposition.

Theorem 1. There exist at least n acute dihedral angles in any n-simplex, and there exists an n-simplex which has only n acute dihedral angles.

It is clear that Theorem 1 can be replaced equivalently by the following statement.

Theorem 1'. There exist at most $\frac{1}{2}n(n-1)$ obtuse dihedral angles in any n-simplex, and there exists an n-simplex which has only $\frac{1}{2}n(n-1)$ obtuse dihedral angles.

To prove Theorem 1', we need the following three lemmas.

Lemma 1. Let $\{x_1, x_2, \cdots, x_n\}$ be a given linearly independent set of vectors from \mathbb{R}^n. Then there exists an n-simplex Ω which takes $\frac{x_1}{\|x_1\|}, \frac{x_2}{\|x_2\|}, \cdots, \frac{x_n}{\|x_n\|}$ as n unit outer normal vectors of facets.

Proof. Since x_1, x_2, \cdots, x_n are linearly independent, there exist n linearly independent vectors v_1, v_2, \cdots, v_n such that

$$(x_i, v_j) = \delta_{ij} \|x_i\|^2 \ (i, j = 1, 2, \cdots, n),$$

Received by the editors May 31, 2000 and, in revised form, August 8, 2001.
2000 Mathematics Subject Classification. Primary 52A20.
Key words and phrases. Simplex, dihedral angle, dual basis.
This work was supported by the National Natural Sciences Foundation of China (10271071).
Lemma 3. \(\delta_{ij}\) is the Kronecker delta symbol and \(\langle , \rangle\) denotes the ordinary inner product of \(R^n\).

Without loss of generality, we may assume that \(v_i = \overrightarrow{A_0 A_i} (i = 1, \ldots, n)\). We now consider the \(n\)-simplex \(\Omega = \{A_1, A_2, \ldots, A_{n+1}\}\). Since \(x_i \perp v_j (i \neq j)\), it follows that
\[x_i \perp \pi_i (i = 1, 2, \ldots, n),\]
where \(\pi_i\) is the hyperplane spanned by the facet \(\Omega_i\). This completes the proof of Lemma 1.

Lemma 2 (Yang and Zhang [3]). Let \(\Omega\) and \(\Omega'\) be two \(n\)-simplices with dihedral angles \(\theta_{ij}\) and \(\theta'_{ij}\) \((1 \leq i < j \leq n + 1)\), respectively. If
\[\theta_{ij} \leq \theta'_{ij} (1 \leq i < j \leq n + 1),\]
then \(\Omega\) and \(\Omega'\) are similar, namely,
\[\theta_{ij} = \theta'_{ij} (1 \leq i < j \leq n + 1).\]

Let \(\{u_1, \ldots, u_n\}\) and \(\{s_1, \ldots, s_n\}\) be two bases of \(R^n\). They are called dual if
\[\langle u_i, s_j \rangle = \delta_{ij} (1 \leq i \leq n)\]
It is well known that there exists a unique dual basis for a given basis of \(R^n\).

Lemma 3. Let \(U = \{u_1, \ldots, u_n\}\) be a basis of \(R^n\) and \(\{s_1, \ldots, s_n\}\) be the dual basis of \(U\). If \(\langle u_i, u_j \rangle < 0 (i \neq j)\), then \(\langle s_i, s_j \rangle > 0\) for all \(i, j\).

Proof. We first consider \(n = 2\). Suppose that \(\langle u_1, u_2 \rangle < 0\) and \(\{s_1, s_2\}\) is the dual basis. Then \(s_1 = \langle s_1, s_1 \rangle u_1 + \langle s_1, s_2 \rangle u_2\). Hence
\[0 = \langle s_1, u_2 \rangle = \langle s_1, s_1 \rangle \langle u_1, u_2 \rangle + \langle s_1, s_2 \rangle \|u_2\|^2.\]
Thus \(\langle s_1, s_2 \rangle > 0\).

Turning to the case of general \(n\), let
\[H_1 = \{x \in R^n \mid \langle u_1, x \rangle = 0\}\]
Then the vectors \(u_2, \ldots, u_n\) are on the opposite side of \(H_1\) from \(u_1\). For \(j \geq 2\), let \(u_j = y_j + z_j, y_j \perp H_1, z_j \in H_1\); then
\[y_j = \frac{\langle u_1, u_j \rangle}{\|u_1\|^2} u_1, \quad z_j = u_j - \frac{\langle u_1, u_j \rangle}{\|u_1\|^2} u_1.\]
If \(i \neq j\) and \(i, j \geq 2\), then
\[\langle z_i, z_j \rangle = \langle u_i - \frac{\langle u_1, u_i \rangle}{\|u_1\|^2} u_1, u_j - \frac{\langle u_1, u_j \rangle}{\|u_1\|^2} u_1 \rangle = \langle u_i, u_j \rangle - 2 \frac{\langle u_1, u_i \rangle \langle u_1, u_j \rangle}{\|u_1\|^2} + \frac{\langle u_1, u_1 \rangle \langle u_1, u_j \rangle}{\|u_1\|^2} = \langle u_i, u_j \rangle - \frac{\langle u_1, u_2 \rangle \langle u_1, u_j \rangle}{\|u_1\|^2} < 0.\]
Note that \(s_k \in H_1\) for \(k \geq 2\), and
\[\langle z_j, s_k \rangle = \langle u_j - \frac{\langle u_1, u_i \rangle}{\|u_1\|^2} u_1, s_k \rangle = \langle u_j, s_k \rangle = \delta_{jk}\]
for \(k, j \geq 2\).

Since \(\{z_2, \ldots, z_n\}\) and \(\{s_2, \ldots, s_n\}\) are biorthogonal sets of \(n - 1\) vectors in the \((n - 1)\)-dimensional subspace \(H_1\), they must be dual bases in \(H_1\), and \(\langle z_i, z_j \rangle < 0\)
where \(i \neq j \). If \(\text{dim } H_1 > 2 \), then we can continue projecting to lower-dimensional subspaces until \(\{ u_1, \ldots, u_n \} \) is mapped to a basis \(G = \{ g_{n-1}, g_n \} \) in a two-dimensional subspace with \(\langle g_{n-1}, g_n \rangle < 0 \) and with \(\{ s_{n-1}, s_n \} \) the dual basis of \(G \). But then in dimension 2, \(\langle s_{n-1}, s_n \rangle > 0 \), completing the proof.

Proof of Theorem \(\text{I}' \). We will first construct an \(n \)-simplex that has exactly \(\frac{1}{2}n(n-1) \) obtuse dihedral angles. Denote by \(\overline{\Omega} \) an \(n \)-simplex all of whose dihedral angles are acute (obviously, such an \(\overline{\Omega} \) exists, e.g., regular simplex).

Let \(u_1, u_2, \ldots, u_n \) be unit outer normal vectors of \(n \) facets of \(\overline{\Omega} \). Then

\[
\langle u_i, u_j \rangle < 0, \quad i \neq j,
\]

and \(U = \{ u_1, \ldots, u_n \} \) is a basis of \(R^n \). Further let \(\{ s_1, \ldots, s_n \} \) be the dual basis of \(U \). By Lemma 1, there exists an \(n \)-simplex \(\Omega \) which takes \(e_1, \ldots, e_n \) as unit outer normal vectors of \(n \) facets, where \(e_i = \frac{u_i}{\| u_i \|} \). By Lemma 3, we have

\[
\langle e_i, e_j \rangle = \frac{1}{\| s_i \| \| s_j \|} \langle s_i, s_j \rangle > 0, \quad 1 \leq i, j \leq n.
\]
(1.1)

Let \(e_{n+1} \) be the unit outer normal vector of the \((n+1)\)-th facet of \(\Omega \), and \(f_i \) the \((n-1)\)-dimensional volume of the facet \(\Omega_i \) of \(\Omega \). By Minkowski’s realization theorem (see [2, p. 390]), we have

\[
\sum_{i=1}^{n+1} f_i e_i = 0.
\]

Therefore, for \(j \in \{1, 2, \ldots, n\} \),

\[
\langle e_{n+1}, e_j \rangle = \langle -\sum_{i=1}^{n} e_i \frac{f_i}{f_{n+1}}, e_j \rangle
\]

\[
= -\sum_{i=1}^{n} \langle e_i, e_j \rangle \frac{f_i}{f_{n+1}} < 0.
\]
(1.2)

By (1.1) and (1.2), we know that \(\Omega \) has \(\frac{1}{2}n(n-1) \) obtuse dihedral angles and \(n \) acute dihedral angles.

Assume that there exists an \(n \)-simplex whose obtuse dihedral angles are more than \(\frac{1}{2}n(n-1) \). Without loss of generality, we may assume that

\[
\alpha_1, \ldots, \alpha_{\frac{1}{2}n(n-1)-1}, \alpha_{\frac{1}{2}n(n-1)+1}, \ldots, \alpha_{\frac{1}{2}n(n-1)+j}
\]

are its obtuse dihedral angles, while \(\alpha_{\frac{1}{2}n(n-1)+j+1}, \ldots, \alpha_{\frac{1}{2}n(n+1)} \) are acute. Thus, we can construct a rectangular \(n \)-simplex with acute dihedral angles \(\alpha_{\frac{1}{2}n(n-1)+j+1}, \ldots, \alpha_{\frac{1}{2}n(n+1)} \). In fact, let \(\{ \overline{e}_1, \ldots, \overline{e}_n \} \) be a standard base of \(R^n \), and let

\[
\overline{e}_{n+1} = \sqrt{\frac{1-\lambda}{j}} \overline{e}_1 - \cdots - \sqrt{\frac{1-\lambda}{j}} \overline{e}_j - \cos \alpha_{\frac{1}{2}n(n-1)+j+1} \overline{e}_{j+1} - \cdots - \cos \alpha_{\frac{1}{2}n(n+1)} \overline{e}_n,
\]

where

\[
\lambda = \cos^2 \alpha_{\frac{1}{2}n(n-1)+j+1} + \cdots + \cos^2 \alpha_{\frac{1}{2}n(n+1)}.
\]
Then the rectangular simplex that takes $\tau_1, \cdots, \tau_n, \tau_{n+1}$ as $n+1$ unit normal vectors of facets has n acute dihedral angles

$$\arccos \frac{1 - \lambda}{j}, \cdots, \arccos \frac{1 - \lambda}{j}, \alpha_{\frac{j(n-1)+j+1}{2}}, \cdots, \alpha_{\frac{j(n+1)}{2}}.$$

By Lemma 2, this is contradictory. This completes the proof. □

ACKNOWLEDGEMENTS

The author would like to thank the referees for many valuable suggestions and comments.

REFERENCES

DEPARTMENT OF MATHEMATICS, SHANGHAI UNIVERSITY, SHANGHAI, 200436, PEOPLE’S REPUBLIC OF CHINA
E-mail address: gleng@mail.shu.edu.cn