Local cohomology over homogeneous rings with one-dimensional local base ring
Authors:
M. Brodmann, S. Fumasoli and R. Tajarod
Journal:
Proc. Amer. Math. Soc. 131 (2003), 2977-2985
MSC (2000):
Primary 13D45, 13E10
DOI:
https://doi.org/10.1090/S0002-9939-03-07009-6
Published electronically:
April 21, 2003
MathSciNet review:
1993202
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $R=\bigoplus _{n\geq 0}R_n$ be a homogeneous Noetherian ring with local base ring $(R_0,\mathfrak {m}_0)$ and let $M$ be a finitely generated graded $R$-module. Let $H^i_{R_+}(M)$ be the $i$-th local cohomology module of $M$ with respect to $R_+:=\bigoplus _{n>0}R_n$. If $\dim R_0\leq 1$, the $R$-modules $\Gamma _{\mathfrak {m}_0R}(H^i_{R_+}(M))$, $(0:_{H_{R_+}^i(M)}\mathfrak {m}_0)$ and $H^i_{R_+}(M)/\mathfrak {m}_0H^i_{R_+}(M)$ are Artinian for all $i\in \mathbb {N}_0$. As a consequence, much can be said on the asymptotic behaviour of the $R_0$-modules $H^i_{R_+}(M)_n$ for $n\rightarrow -\infty$.
- BRODMANN, M., HELLUS, M., Cohomological patterns of coherent sheaves over projective schemes, Journal of Pure and Applied Algebra 172 (2002), 165–182.
- BRODMANN, M., KATZMAN, M., SHARP, R.Y., Associated primes of graded components of local cohomology modules, Transactions of the AMS 354 (2002), 4261–4283.
- BRODMANN, M., MATTEOTTI, C., MINH, N.D., Bounds for cohomological deficiency functions of projective schemes over artinian rings, to appear in Vietnam Journal of Mathematics.
- M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, vol. 60, Cambridge University Press, Cambridge, 1998. MR 1613627
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- KATZMAN, M., An example of an infinite set of associated primes of a local cohomology module, Journal of Algebra 252 (2002), 161–166.
- D. Kirby, Artinian modules and Hilbert polynomials, Quart. J. Math. Oxford Ser. (2) 24 (1973), 47–57. MR 316446, DOI https://doi.org/10.1093/qmath/24.1.47
- Anurag K. Singh, $p$-torsion elements in local cohomology modules, Math. Res. Lett. 7 (2000), no. 2-3, 165–176. MR 1764314, DOI https://doi.org/10.4310/MRL.2000.v7.n2.a3
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13D45, 13E10
Retrieve articles in all journals with MSC (2000): 13D45, 13E10
Additional Information
M. Brodmann
Affiliation:
Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, CH – 8057 Zürich, Switzerland
MR Author ID:
41830
Email:
brodmann@math.unizh.ch
S. Fumasoli
Affiliation:
Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, CH – 8057 Zürich, Switzerland
Email:
fumasoli@math.unizh.ch
R. Tajarod
Affiliation:
Institute of Mathematics, University for Teacher Education, 599 Taleghani Avenue, Tehran 15614, Iran
MR Author ID:
673912
Email:
roshan@iranpasargad.net
Keywords:
Local cohomology modules,
Artinian modules,
graded components
Received by editor(s):
April 16, 2002
Published electronically:
April 21, 2003
Additional Notes:
The third author thanks the University of Zürich for the hospitality offered during the preparation of this paper.
Communicated by:
Bernd Ulrich
Article copyright:
© Copyright 2003
American Mathematical Society