Local cohomology over homogeneous rings with one-dimensional local base ring
HTML articles powered by AMS MathViewer
- by M. Brodmann, S. Fumasoli and R. Tajarod
- Proc. Amer. Math. Soc. 131 (2003), 2977-2985
- DOI: https://doi.org/10.1090/S0002-9939-03-07009-6
- Published electronically: April 21, 2003
- PDF | Request permission
Abstract:
Let $R=\bigoplus _{n\geq 0}R_n$ be a homogeneous Noetherian ring with local base ring $(R_0,\mathfrak {m}_0)$ and let $M$ be a finitely generated graded $R$-module. Let $H^i_{R_+}(M)$ be the $i$-th local cohomology module of $M$ with respect to $R_+:=\bigoplus _{n>0}R_n$. If $\dim R_0\leq 1$, the $R$-modules $\Gamma _{\mathfrak {m}_0R}(H^i_{R_+}(M))$, $(0:_{H_{R_+}^i(M)}\mathfrak {m}_0)$ and $H^i_{R_+}(M)/\mathfrak {m}_0H^i_{R_+}(M)$ are Artinian for all $i\in \mathbb {N}_0$. As a consequence, much can be said on the asymptotic behaviour of the $R_0$-modules $H^i_{R_+}(M)_n$ for $n\rightarrow -\infty$.References
- BRODMANN, M., HELLUS, M., Cohomological patterns of coherent sheaves over projective schemes, Journal of Pure and Applied Algebra 172 (2002), 165–182.
- BRODMANN, M., KATZMAN, M., SHARP, R.Y., Associated primes of graded components of local cohomology modules, Transactions of the AMS 354 (2002), 4261–4283.
- BRODMANN, M., MATTEOTTI, C., MINH, N.D., Bounds for cohomological deficiency functions of projective schemes over artinian rings, to appear in Vietnam Journal of Mathematics.
- M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, vol. 60, Cambridge University Press, Cambridge, 1998. MR 1613627, DOI 10.1017/CBO9780511629204
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- KATZMAN, M., An example of an infinite set of associated primes of a local cohomology module, Journal of Algebra 252 (2002), 161–166.
- D. Kirby, Artinian modules and Hilbert polynomials, Quart. J. Math. Oxford Ser. (2) 24 (1973), 47–57. MR 316446, DOI 10.1093/qmath/24.1.47
- Anurag K. Singh, $p$-torsion elements in local cohomology modules, Math. Res. Lett. 7 (2000), no. 2-3, 165–176. MR 1764314, DOI 10.4310/MRL.2000.v7.n2.a3
Bibliographic Information
- M. Brodmann
- Affiliation: Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, CH – 8057 Zürich, Switzerland
- MR Author ID: 41830
- Email: brodmann@math.unizh.ch
- S. Fumasoli
- Affiliation: Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, CH – 8057 Zürich, Switzerland
- Email: fumasoli@math.unizh.ch
- R. Tajarod
- Affiliation: Institute of Mathematics, University for Teacher Education, 599 Taleghani Avenue, Tehran 15614, Iran
- MR Author ID: 673912
- Email: roshan@iranpasargad.net
- Received by editor(s): April 16, 2002
- Published electronically: April 21, 2003
- Additional Notes: The third author thanks the University of Zürich for the hospitality offered during the preparation of this paper.
- Communicated by: Bernd Ulrich
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 2977-2985
- MSC (2000): Primary 13D45, 13E10
- DOI: https://doi.org/10.1090/S0002-9939-03-07009-6
- MathSciNet review: 1993202