Phelps’ lemma, Danes̆’ drop theorem and Ekeland’s principle in locally convex spaces
HTML articles powered by AMS MathViewer
- by Andreas H. Hamel
- Proc. Amer. Math. Soc. 131 (2003), 3025-3038
- DOI: https://doi.org/10.1090/S0002-9939-03-07066-7
- Published electronically: April 30, 2003
- PDF | Request permission
Abstract:
A generalization of Phelps’ lemma to locally convex spaces is proven, applying its well-known Banach space version. We show the equivalence of this theorem, Ekeland’s principle and Danes̆’ drop theorem in locally convex spaces to their Banach space counterparts and to a Pareto efficiency theorem due to Isac. This solves a problem, concerning the drop theorem, proposed by G. Isac in 1997.
We show that a different formulation of Ekeland’s principle in locally convex spaces, using a family of topology generating seminorms as perturbation functions rather than a single (in general discontinuous) Minkowski functional, turns out to be equivalent to the original version.
References
- Hédy Attouch and Hassan Riahi, Stability results for Ekeland’s $\epsilon$-variational principle and cone extremal solutions, Math. Oper. Res. 18 (1993), no. 1, 173–201. MR 1250113, DOI 10.1287/moor.18.1.173
- Errett Bishop and R. R. Phelps, The support functionals of a convex set, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 27–35. MR 0154092
- Jonathan M. Borwein, On the existence of Pareto efficient points, Math. Oper. Res. 8 (1983), no. 1, 64–73. MR 703826, DOI 10.1287/moor.8.1.64
- James Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241–251. MR 394329, DOI 10.1090/S0002-9947-1976-0394329-4
- Li Xin Cheng, Yunchi Zhou, and Fong Zhang, Danes’ drop theorem in locally convex spaces, Proc. Amer. Math. Soc. 124 (1996), no. 12, 3699–3702. MR 1328359, DOI 10.1090/S0002-9939-96-03404-1
- Josef Daneš, A geometric theorem useful in nonlinear functional analysis, Boll. Un. Mat. Ital. (4) 6 (1972), 369–375 (English, with Italian summary). MR 0317130
- J. Daneš, Equivalence of some geometric and related results of nonlinear functional analysis, Comment. Math. Univ. Carolin. 26 (1985), no. 3, 443–454. MR 817819
- Ivar Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 443–474. MR 526967, DOI 10.1090/S0273-0979-1979-14595-6
- Jin-Xuan Fang, The variational principle and fixed point theorems in certain topological spaces, J. Math. Anal. Appl. 202 (1996), no. 2, 398–412. MR 1406237, DOI 10.1006/jmaa.1996.0323
- Pando Grigorov Georgiev, The strong Ekeland variational principle, the strong drop theorem and applications, J. Math. Anal. Appl. 131 (1988), no. 1, 1–21. MR 934428, DOI 10.1016/0022-247X(88)90187-4
- A. Göpfert and Chr. Tammer, A new maximal point theorem, Z. Anal. Anwendungen 14 (1995), no. 2, 379–390. MR 1337266, DOI 10.4171/ZAA/680
- A. Göpfert, Chr. Tammer, and C. Zălinescu, On the vectorial Ekeland’s variational principle and minimal points in product spaces, Nonlinear Anal. 39 (2000), no. 7, Ser. A: Theory Methods, 909–922. MR 1736394, DOI 10.1016/S0362-546X(98)00255-7
- HAMEL, A. Equivalents to Ekeland’s Variational Principle in $\mathcal {F}$-type Topological Spaces. Report of the Institut of Optimization and Stochastics 9, Martin-Luther-University Halle-Wittenberg, Department of Mathematics and Computer Science, 2001.
- G. Isac, Ekeland’s principle and nuclear cones: a geometrical aspect, Math. Comput. Modelling 26 (1997), no. 11, 111–116. MR 1491337, DOI 10.1016/S0895-7177(97)00223-9
- Noriko Mizoguchi, A generalization of Brøndsted’s results and its applications, Proc. Amer. Math. Soc. 108 (1990), no. 3, 707–714. MR 991704, DOI 10.1090/S0002-9939-1990-0991704-4
- W. Oettli and M. Théra, Equivalents of Ekeland’s principle, Bull. Austral. Math. Soc. 48 (1993), no. 3, 385–392. MR 1248042, DOI 10.1017/S0004972700015847
- Sehie Park, On generalizations of the Ekeland-type variational principles, Nonlinear Anal. 39 (2000), no. 7, Ser. A: Theory Methods, 881–889. MR 1736392, DOI 10.1016/S0362-546X(98)00253-3
- Jean-Paul Penot, The drop theorem, the petal theorem and Ekeland’s variational principle, Nonlinear Anal. 10 (1986), no. 9, 813–822. MR 856865, DOI 10.1016/0362-546X(86)90069-6
- R. R. Phelps, Support cones and their generalizations, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 393–401. MR 0154093
- R. R. Phelps, Support cones in Banach spaces and their applications, Advances in Math. 13 (1974), 1–19. MR 338741, DOI 10.1016/0001-8708(74)90062-0
- Robert R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1989. MR 984602, DOI 10.1007/BFb0089089
- François Trèves, Locally convex spaces and linear partial differential equations, Die Grundlehren der mathematischen Wissenschaften, Band 146, Springer-Verlag New York, Inc., New York, 1967. MR 0223939
- P. P. Zabreĭko and M. A. Krasnosel′skiĭ, The solvability of nonlinear operator equations, Funkcional. Anal. i Priložen. 5 (1971), no. 3, 42–44 (Russian). MR 0283646
Bibliographic Information
- Andreas H. Hamel
- Affiliation: Department of Mathematics and Computer Sciences, Martin-Luther-University Halle-Wittenberg, Theodor-Lieser-Str. 5, D-06099 Halle, Germany
- Email: hamel@mathematik.uni-halle.de
- Received by editor(s): May 17, 2001
- Published electronically: April 30, 2003
- Communicated by: Jonathan M. Borwein
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3025-3038
- MSC (2000): Primary 49J40, 46A03
- DOI: https://doi.org/10.1090/S0002-9939-03-07066-7
- MathSciNet review: 1993209