Local rings of countable Cohen-Macaulay type
Authors:
Craig Huneke and Graham J. Leuschke
Journal:
Proc. Amer. Math. Soc. 131 (2003), 3003-3007
MSC (2000):
Primary 13C14; Secondary 13H10, 13C05
DOI:
https://doi.org/10.1090/S0002-9939-03-07167-3
Published electronically:
May 9, 2003
MathSciNet review:
1993205
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove (the excellent case of) Schreyer’s conjecture that a local ring with countable CM type has at most a one-dimensional singular locus. Furthermore, we prove that the localization of a Cohen-Macaulay local ring of countable CM type is again of countable CM type.
- Maurice Auslander, Isolated singularities and existence of almost split sequences, Representation theory, II (Ottawa, Ont., 1984) Lecture Notes in Math., vol. 1178, Springer, Berlin, 1986, pp. 194–242. MR 842486, DOI https://doi.org/10.1007/BFb0075297
- Maurice Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), no. 2, 511–531. MR 816307, DOI https://doi.org/10.1090/S0002-9947-1986-0816307-7
- Maurice Auslander and Ragnar-Olaf Buchweitz, The homological theory of maximal Cohen-Macaulay approximations, Mém. Soc. Math. France (N.S.) 38 (1989), 5–37 (English, with French summary). Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR 1044344
- R.-O. Buchweitz, G.-M. Greuel, and F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math. 88 (1987), no. 1, 165–182. MR 877011, DOI https://doi.org/10.1007/BF01405096
- Lindsay Burch, Codimension and analytic spread, Proc. Cambridge Philos. Soc. 72 (1972), 369–373. MR 304377, DOI https://doi.org/10.1017/s0305004100047198
- G.-M. Greuel and H. Knörrer, Einfache Kurvensingularitäten und torsionsfreie Moduln, Math. Ann. 270 (1985), no. 3, 417–425 (German). MR 774367, DOI https://doi.org/10.1007/BF01473437
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 199181
- C. Huneke and G. Leuschke, Two theorems about maximal Cohen–Macaulay modules, Math. Ann. 324 (2002), 391–404.
- Horst Knörrer, Cohen-Macaulay modules on hypersurface singularities. I, Invent. Math. 88 (1987), no. 1, 153–164. MR 877010, DOI https://doi.org/10.1007/BF01405095
- Graham Leuschke and Roger Wiegand, Ascent of finite Cohen-Macaulay type, J. Algebra 228 (2000), no. 2, 674–681. MR 1764587, DOI https://doi.org/10.1006/jabr.2000.8294
- Paul Roberts, Homological invariants of modules over commutative rings, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 72, Presses de l’Université de Montréal, Montreal, Que., 1980. MR 569936
- Frank-Olaf Schreyer, Finite and countable CM-representation type, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 9–34. MR 915167, DOI https://doi.org/10.1007/BFb0078836
- R. Y. Sharp and P. Vámos, Baire’s category theorem and prime avoidance in complete local rings, Arch. Math. (Basel) 44 (1985), no. 3, 243–248. MR 784093, DOI https://doi.org/10.1007/BF01237858
- Roger Wiegand, Local rings of finite Cohen-Macaulay type, J. Algebra 203 (1998), no. 1, 156–168. MR 1620725, DOI https://doi.org/10.1006/jabr.1997.7319
- Yuji Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990. MR 1079937
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13C14, 13H10, 13C05
Retrieve articles in all journals with MSC (2000): 13C14, 13H10, 13C05
Additional Information
Craig Huneke
Affiliation:
Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
MR Author ID:
89875
Email:
huneke@math.ukans.edu
Graham J. Leuschke
Affiliation:
Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
Email:
gleuschke@math.ukans.edu
Keywords:
Maximal Cohen–Macaulay modules,
CM representation type,
countable CM type
Received by editor(s):
May 10, 2002
Published electronically:
May 9, 2003
Additional Notes:
Both authors were supported by the National Science Foundation
Communicated by:
Bernd Ulrich
Article copyright:
© Copyright 2003
American Mathematical Society