Nehari and Carathéodory-Fejér type extension results for operator-valued functions on groups
HTML articles powered by AMS MathViewer
- by Mihály Bakonyi
- Proc. Amer. Math. Soc. 131 (2003), 3517-3525
- DOI: https://doi.org/10.1090/S0002-9939-03-06897-7
- Published electronically: February 20, 2003
- PDF | Request permission
Abstract:
Let $G$ be a compact abelian group having the property that its character group $\Gamma$ is totally ordered by a semigroup $P$. We prove that every operator-valued function $k$ on $G$ of the form $k(x)=\sum \limits _{\gamma \in (-P)}\gamma (x)k_{\gamma }$, such that the Hankel operator $H_k$ is bounded, has an essentially bounded extension $K$ with $||K||_{\infty }=||H_k||$. The proof is based on Arveson’s Extension Theorem for completely positive functions on $C^*$-algebras. Among the corollaries we have a Carathéodory-Fejér type result for analytic operator-valued functions defined on such groups.References
- V. M. Adamjan, D. Z. Arov, and M. G. Kreĭn, Infinite Hankel matrices and generalized problems of Carathéodory-Fejér and F. Riesz, Funkcional. Anal. i Priložen. 2 (1968), no. 1, 1–19 (Russian). MR 0234274, DOI 10.1007/BF01075356
- William B. Arveson, Subalgebras of $C^{\ast }$-algebras, Acta Math. 123 (1969), 141–224. MR 253059, DOI 10.1007/BF02392388
- William Arveson, Interpolation problems in nest algebras, J. Functional Analysis 20 (1975), no. 3, 208–233. MR 0383098, DOI 10.1016/0022-1236(75)90041-5
- M. Bakonyi, The extension of positive definite operator-valued functions defined on a symmetric interval of an ordered group, Proc. Amer. Math. Soc., Vol. 130, No. 5(2002), 1401–1406.
- M. Bakonyi and D. Timotin, The intertwining lifting theorem for ordered groups, to appear in J. Functional Anal.
- Ramón Bruzual and Marisela Domínguez, Extensions of operator valued positive definite functions and commutant lifting on ordered groups, J. Funct. Anal. 185 (2001), no. 2, 456–473. MR 1856274, DOI 10.1006/jfan.2001.3758
- C. Carathéodory and L. Fejér, Über den Zusammenhang der Extremen von harmonischen Funktionen mit ihren Koeffizienten und Über den Picard-Landauschen Satz, Rend. Circ. Mat. Palermo, Vol. 32(1911), 193-217.
- Marisela Dominguez, Interpolation and prediction problems for connected compact abelian groups, Integral Equations Operator Theory 40 (2001), no. 2, 212–230. MR 1831827, DOI 10.1007/BF01301466
- Ciprian Foias and Arthur E. Frazho, The commutant lifting approach to interpolation problems, Operator Theory: Advances and Applications, vol. 44, Birkhäuser Verlag, Basel, 1990. MR 1120546, DOI 10.1007/978-3-0348-7712-1
- Henry Helson and David Lowdenslager, Prediction theory and Fourier series in several variables, Acta Math. 99 (1958), 165–202. MR 97688, DOI 10.1007/BF02392425
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Vern I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics Series, vol. 146, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986. MR 868472
- Vern I. Paulsen, Stephen C. Power, and Roger R. Smith, Schur products and matrix completions, J. Funct. Anal. 85 (1989), no. 1, 151–178. MR 1005860, DOI 10.1016/0022-1236(89)90050-5
- Leiba Rodman, Ilya M. Spitkovsky, and Hugo J. Woerdeman, Carathéodory-Toeplitz and Nehari problems for matrix valued almost periodic functions, Trans. Amer. Math. Soc. 350 (1998), no. 6, 2185–2227. MR 1422908, DOI 10.1090/S0002-9947-98-01937-0
- L. Rodman, I. Spitkovsky, and H.J. Woerdeman, Contractive extension problems for matrix valued almost periodic functions of several variables, J. Operator Theory, Vol. 47(2002), 3–35.
- Leiba Rodman, Ilya M. Spitkovsky, and Hugo J. Woerdeman, Multiblock problems for almost periodic matrix functions of several variables, New York J. Math. 7 (2001), 117–148. MR 1856955
- L. Rodman, I. Spitkovsky, and H.J. Woerdeman, Abstract band method via factorization, positive and band extensions of multivariable almost periodic matrix functions, and spectral estimation, to appear in the Memoirs of the AMS.
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Zoltán Sasvári, Positive definite and definitizable functions, Mathematical Topics, vol. 2, Akademie Verlag, Berlin, 1994. MR 1270018
- Ilya M. Spitkovsky and Hugo J. Woerdeman, The Carathéodory-Toeplitz problem for almost periodic functions, J. Funct. Anal. 115 (1993), no. 2, 281–293. MR 1234392, DOI 10.1006/jfan.1993.1091
Bibliographic Information
- Mihály Bakonyi
- Affiliation: Department of Mathematics, Georgia State University, Atlanta, Georgia 30303-3083
- Email: mbakonyi@cs.gsu.edu
- Received by editor(s): March 6, 2002
- Received by editor(s) in revised form: June 16, 2002
- Published electronically: February 20, 2003
- Communicated by: Joseph A. Ball
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3517-3525
- MSC (2000): Primary 43A17, 47A57, 43A35, 47A20
- DOI: https://doi.org/10.1090/S0002-9939-03-06897-7
- MathSciNet review: 1991764