Linear maps preserving ideals of C$^{*}$-algebras
HTML articles powered by AMS MathViewer
- by Jianlian Cui and Jinchuan Hou
- Proc. Amer. Math. Soc. 131 (2003), 3441-3446
- DOI: https://doi.org/10.1090/S0002-9939-03-06903-X
- Published electronically: February 6, 2003
- PDF | Request permission
Abstract:
We show that every unital linear bijection which preserves the maximal left ideals from a semi-simple Banach algebra onto a C$^{*}$-algebra of real rank zero is a Jordan isomorphism. Furthermore, every unital self-adjoint linear bijection on a countably decomposable factor von Neumann algebra is maximal left ideal preserving if and only if it is a *-automorphism.References
- Bernard Aupetit, A primer on spectral theory, Universitext, Springer-Verlag, New York, 1991. MR 1083349, DOI 10.1007/978-1-4612-3048-9
- Bernard Aupetit, Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras, J. London Math. Soc. (2) 62 (2000), no. 3, 917–924. MR 1794294, DOI 10.1112/S0024610700001514
- Lawrence G. Brown and Gert K. Pedersen, $C^*$-algebras of real rank zero, J. Funct. Anal. 99 (1991), no. 1, 131–149. MR 1120918, DOI 10.1016/0022-1236(91)90056-B
- Cui, J., Hou, J., Linear maps between semi-simple Banach algebras compressing certain spectral functions, Rocky Mountain J. Math., to appear.
- Andrew M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171–172. MR 213878, DOI 10.1007/BF02788714
- Herstein, I.N., Topics in ring theory, Springer, Berlin, 1991.
- B. E. Johnson, Centralisers and operators reduced by maximal ideals, J. London Math. Soc. 43 (1968), 231–233. MR 223890, DOI 10.1112/jlms/s1-43.1.231
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Graduate Studies in Mathematics, vol. 15, American Mathematical Society, Providence, RI, 1997. Elementary theory; Reprint of the 1983 original. MR 1468229, DOI 10.1090/gsm/015
- J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339–343. MR 226408, DOI 10.4064/sm-29-3-339-343
- Sang Og Kim, Linear maps preserving ideals of $C^*$-algebras, Proc. Amer. Math. Soc. 129 (2001), no. 6, 1665–1668. MR 1814095, DOI 10.1090/S0002-9939-00-06003-2
- Lajos Molnár, Some linear preserver problems on $B(H)$ concerning rank and corank, Linear Algebra Appl. 286 (1999), no. 1-3, 311–321. MR 1661167, DOI 10.1016/S0024-3795(98)10189-1
- Shôichirô Sakai, $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR 0442701
- V. S. Shul′man, Operators preserving ideals in $C^*$-algebras, Studia Math. 109 (1994), no. 1, 67–72. MR 1267712, DOI 10.4064/sm-109-1-67-72
- Erling Størmer, On the Jordan structure of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 120 (1965), 438–447. MR 185463, DOI 10.1090/S0002-9947-1965-0185463-5
Bibliographic Information
- Jianlian Cui
- Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- Address at time of publication: Department of Applied Mathematics, Taiyuan University of Technology, Taiyuan 030024, People’s Republic of China; Department of Mathematics, Shanxi Teachers University, Linfen, 041004, People’s Republic of China
- Email: cuijl@dns.sxtu.edu.cn
- Jinchuan Hou
- Affiliation: Department of Mathematics, Shanxi Teachers University, Linfen, 041004, People’s Republic of China
- Email: jhou@dns.sxtu.edu.cn
- Received by editor(s): November 7, 2001
- Received by editor(s) in revised form: May 27, 2002
- Published electronically: February 6, 2003
- Additional Notes: This work was supported by NNSFC and PNSFS
- Communicated by: Joseph A. Ball
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3441-3446
- MSC (2000): Primary 47B48, 47L30, 47A10
- DOI: https://doi.org/10.1090/S0002-9939-03-06903-X
- MathSciNet review: 1990633