## Linear maps preserving ideals of C$^{*}$-algebras

HTML articles powered by AMS MathViewer

- by Jianlian Cui and Jinchuan Hou
- Proc. Amer. Math. Soc.
**131**(2003), 3441-3446 - DOI: https://doi.org/10.1090/S0002-9939-03-06903-X
- Published electronically: February 6, 2003
- PDF | Request permission

## Abstract:

We show that every unital linear bijection which preserves the maximal left ideals from a semi-simple Banach algebra onto a C$^{*}$-algebra of real rank zero is a Jordan isomorphism. Furthermore, every unital self-adjoint linear bijection on a countably decomposable factor von Neumann algebra is maximal left ideal preserving if and only if it is a *-automorphism.## References

- Bernard Aupetit,
*A primer on spectral theory*, Universitext, Springer-Verlag, New York, 1991. MR**1083349**, DOI 10.1007/978-1-4612-3048-9 - Bernard Aupetit,
*Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras*, J. London Math. Soc. (2)**62**(2000), no. 3, 917–924. MR**1794294**, DOI 10.1112/S0024610700001514 - Lawrence G. Brown and Gert K. Pedersen,
*$C^*$-algebras of real rank zero*, J. Funct. Anal.**99**(1991), no. 1, 131–149. MR**1120918**, DOI 10.1016/0022-1236(91)90056-B - Cui, J., Hou, J., Linear maps between semi-simple Banach algebras compressing certain spectral functions, Rocky Mountain J. Math., to appear.
- Andrew M. Gleason,
*A characterization of maximal ideals*, J. Analyse Math.**19**(1967), 171–172. MR**213878**, DOI 10.1007/BF02788714 - Herstein, I.N., Topics in ring theory, Springer, Berlin, 1991.
- B. E. Johnson,
*Centralisers and operators reduced by maximal ideals*, J. London Math. Soc.**43**(1968), 231–233. MR**223890**, DOI 10.1112/jlms/s1-43.1.231 - Richard V. Kadison and John R. Ringrose,
*Fundamentals of the theory of operator algebras. Vol. I*, Graduate Studies in Mathematics, vol. 15, American Mathematical Society, Providence, RI, 1997. Elementary theory; Reprint of the 1983 original. MR**1468229**, DOI 10.1090/gsm/015 - J.-P. Kahane and W. Żelazko,
*A characterization of maximal ideals in commutative Banach algebras*, Studia Math.**29**(1968), 339–343. MR**226408**, DOI 10.4064/sm-29-3-339-343 - Sang Og Kim,
*Linear maps preserving ideals of $C^*$-algebras*, Proc. Amer. Math. Soc.**129**(2001), no. 6, 1665–1668. MR**1814095**, DOI 10.1090/S0002-9939-00-06003-2 - Lajos Molnár,
*Some linear preserver problems on $B(H)$ concerning rank and corank*, Linear Algebra Appl.**286**(1999), no. 1-3, 311–321. MR**1661167**, DOI 10.1016/S0024-3795(98)10189-1 - Shôichirô Sakai,
*$C^*$-algebras and $W^*$-algebras*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR**0442701** - V. S. Shul′man,
*Operators preserving ideals in $C^*$-algebras*, Studia Math.**109**(1994), no. 1, 67–72. MR**1267712**, DOI 10.4064/sm-109-1-67-72 - Erling Størmer,
*On the Jordan structure of $C^{\ast }$-algebras*, Trans. Amer. Math. Soc.**120**(1965), 438–447. MR**185463**, DOI 10.1090/S0002-9947-1965-0185463-5

## Bibliographic Information

**Jianlian Cui**- Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- Address at time of publication: Department of Applied Mathematics, Taiyuan University of Technology, Taiyuan 030024, People’s Republic of China; Department of Mathematics, Shanxi Teachers University, Linfen, 041004, People’s Republic of China
- Email: cuijl@dns.sxtu.edu.cn
**Jinchuan Hou**- Affiliation: Department of Mathematics, Shanxi Teachers University, Linfen, 041004, People’s Republic of China
- Email: jhou@dns.sxtu.edu.cn
- Received by editor(s): November 7, 2001
- Received by editor(s) in revised form: May 27, 2002
- Published electronically: February 6, 2003
- Additional Notes: This work was supported by NNSFC and PNSFS
- Communicated by: Joseph A. Ball
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**131**(2003), 3441-3446 - MSC (2000): Primary 47B48, 47L30, 47A10
- DOI: https://doi.org/10.1090/S0002-9939-03-06903-X
- MathSciNet review: 1990633