The Gromov-Lawson-Rosenberg conjecture for cocompact Fuchsian groups
HTML articles powered by AMS MathViewer
- by James F. Davis and Kimberly Pearson
- Proc. Amer. Math. Soc. 131 (2003), 3571-3578
- DOI: https://doi.org/10.1090/S0002-9939-03-06905-3
- Published electronically: April 24, 2003
- PDF | Request permission
Abstract:
We prove the Gromov-Lawson-Rosenberg conjecture for cocompact Fuchsian groups, thereby giving necessary and sufficient conditions for a closed spin manifold of dimension greater than four with fundamental group cocompact Fuchsian to admit a metric of positive scalar curvature.References
- Ethan Berkove, Daniel Juan-Pineda, and Kimberly Pearson, The lower algebraic $K$-theory of Fuchsian groups, Comment. Math. Helv. 76 (2001), no. 2, 339â352. MR 1839350, DOI 10.1007/PL00000382
- Boris Botvinnik and Peter B. Gilkey, The eta invariant and the Gromov-Lawson conjecture for elementary abelian groups of odd order, Topology Appl. 80 (1997), no. 1-2, 43â53. MR 1469465, DOI 10.1016/S0166-8641(97)00003-5
- Boris Botvinnik, Peter Gilkey, and Stephan Stolz, The Gromov-Lawson-Rosenberg conjecture for groups with periodic cohomology, J. Differential Geom. 46 (1997), no. 3, 374â405. MR 1484887
- Paul Baum, Alain Connes, and Nigel Higson, Classifying space for proper actions and $K$-theory of group $C^\ast$-algebras, $C^\ast$-algebras: 1943â1993 (San Antonio, TX, 1993) Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240â291. MR 1292018, DOI 10.1090/conm/167/1292018
- James F. Davis and Wolfgang LĂŒck, Spaces over a category and assembly maps in isomorphism conjectures in $K$- and $L$-theory, $K$-Theory 15 (1998), no. 3, 201â252. MR 1659969, DOI 10.1023/A:1007784106877
- J.F. Davis and W. LĂŒck, The $p$-chain spectral sequence, to appear in Math. Ann.
- J.F. Davis and W. LĂŒck, Computations of $K$- and $L$-groups of group rings based on isomorphism conjectures, in preparation.
- Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. MR 551743, DOI 10.1007/BFb0085965
- A. D. Elmendorf, Systems of fixed point sets, Trans. Amer. Math. Soc. 277 (1983), no. 1, 275â284. MR 690052, DOI 10.1090/S0002-9947-1983-0690052-0
- Mikhael Gromov and H. Blaine Lawson Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), no. 3, 423â434. MR 577131, DOI 10.2307/1971103
- I. Hambleton and E.K. Pedersen, Identifying assembly maps in $K$- and $L$-theory, preprint.
- Nigel Hitchin, Harmonic spinors, Advances in Math. 14 (1974), 1â55. MR 358873, DOI 10.1016/0001-8708(74)90021-8
- Michael Joachim and Thomas Schick, Positive and negative results concerning the Gromov-Lawson-Rosenberg conjecture, Geometry and topology: Aarhus (1998), Contemp. Math., vol. 258, Amer. Math. Soc., Providence, RI, 2000, pp. 213â226. MR 1778107, DOI 10.1090/conm/258/04066
- G. G. Kasparov, Lorentz groups: $K$-theory of unitary representations and crossed products, Dokl. Akad. Nauk SSSR 275 (1984), no. 3, 541â545 (Russian). MR 741223
- Svetlana Katok, Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. MR 1177168
- SĆawomir Kwasik and Reinhard Schultz, Positive scalar curvature and periodic fundamental groups, Comment. Math. Helv. 65 (1990), no. 2, 271â286. MR 1057244, DOI 10.1007/BF02566607
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- AndrĂ© Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963), 7â9 (French). MR 156292
- Paul D. Mitchener, Symmetric $K$-theory spectra of $C^\star$-categories, $K$-Theory 24 (2001), no. 2, 157â201. MR 1869627, DOI 10.1023/A:1012773111555
- A. S. MiĆĄÄenko and A. T. Fomenko, The index of elliptic operators over $C^{\ast }$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 4, 831â859, 967 (Russian). MR 548506
- H. PoincarĂ©, ThĂ©orie des groupes fuchsiens, Acta Math. 1 (1882), 1â62.
- J. Rosenberg, $C^\ast$-algebras, positive scalar curvature and the Novikov conjecture. II, Geometric methods in operator algebras (Kyoto, 1983) Pitman Res. Notes Math. Ser., vol. 123, Longman Sci. Tech., Harlow, 1986, pp. 341â374. MR 866507
- Jonathan Rosenberg, $C^\ast$-algebras, positive scalar curvature, and the Novikov conjecture. III, Topology 25 (1986), no. 3, 319â336. MR 842428, DOI 10.1016/0040-9383(86)90047-9
- G. E. Carlsson, R. L. Cohen, W. C. Hsiang, and J. D. S. Jones (eds.), Algebraic topology and its applications, Mathematical Sciences Research Institute Publications, vol. 27, Springer-Verlag, New York, 1994. MR 1268184, DOI 10.1007/978-1-4613-9526-3
- Jonathan Rosenberg and Stephan Stolz, A âstableâ version of the Gromov-Lawson conjecture, The Äech centennial (Boston, MA, 1993) Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 405â418. MR 1321004, DOI 10.1090/conm/181/02046
- Thomas Schick, A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture, Topology 37 (1998), no. 6, 1165â1168. MR 1632971, DOI 10.1016/S0040-9383(97)00082-7
- R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), no. 1-3, 159â183. MR 535700, DOI 10.1007/BF01647970
- Stephan Stolz, Simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 136 (1992), no. 3, 511â540. MR 1189863, DOI 10.2307/2946598
- Stephan Stolz, Positive scalar curvature metricsâexistence and classification questions, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (ZĂŒrich, 1994) BirkhĂ€user, Basel, 1995, pp. 625â636. MR 1403963
- R. W. Thomason, Beware the phony multiplication on Quillenâs ${\scr A}^{-1}{\scr A}$, Proc. Amer. Math. Soc. 80 (1980), no. 4, 569â573. MR 587929, DOI 10.1090/S0002-9939-1980-0587929-6
- H. C. Wilkie, On non-Euclidean crystallographic groups, Math. Z. 91 (1966), 87â102. MR 185013, DOI 10.1007/BF01110157
- R. Wood, Banach algebras and Bott periodicity, Topology 4 (1965/66), 371â389. MR 185598, DOI 10.1016/0040-9383(66)90035-8
Bibliographic Information
- James F. Davis
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- MR Author ID: 194576
- Email: jfdavis@indiana.edu
- Kimberly Pearson
- Affiliation: Department of Mathematics and Computer Science, Valparaiso University, Valparaiso, Indiana 46383
- Email: kpearson@valpo.edu
- Received by editor(s): January 16, 2002
- Received by editor(s) in revised form: May 17, 2002
- Published electronically: April 24, 2003
- Communicated by: Paul Goerss
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3571-3578
- MSC (2000): Primary 53C21; Secondary 19L41, 19L64, 57R15, 55N15, 53C20
- DOI: https://doi.org/10.1090/S0002-9939-03-06905-3
- MathSciNet review: 1991770