Whitney’s example by way of Assouad’s embedding
HTML articles powered by AMS MathViewer
- by Piotr Hajłasz
- Proc. Amer. Math. Soc. 131 (2003), 3463-3467
- DOI: https://doi.org/10.1090/S0002-9939-03-06913-2
- Published electronically: February 6, 2003
- PDF | Request permission
Abstract:
In this note we show how to use the Assouad embedding theorem (about almost bi-Lipschitz embeddings) to construct examples of $C^m$ functions which are not constant on a critical set homeomorphic to the $n$-dimensional cube. This extends the famous example of Whitney. Our examples are shown to be sharp.References
- Patrice Assouad, Espaces métriques, plongements, facteurs, Publications Mathématiques d’Orsay, No. 223-7769, Université Paris XI, U.E.R. Mathématique, Orsay, 1977 (French). Thèse de doctorat. MR 0644642
- Patrice Assouad, Étude d’une dimension métrique liée à la possibilité de plongements dans $\textbf {R}^{n}$, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 15, A731–A734 (French, with English summary). MR 532401
- Patrice Assouad, Plongements lipschitziens dans $\textbf {R}^{n}$, Bull. Soc. Math. France 111 (1983), no. 4, 429–448 (French, with English summary). MR 763553, DOI 10.24033/bsmf.1997
- M. Bonk and J. Heinonen, In preparation.
- M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), no. 2, 266–306. MR 1771428, DOI 10.1007/s000390050009
- G. David and T. Toro, Reifenberg flat metric spaces, snowballs, and embeddings, Math. Ann. 315 (1999), no. 4, 641–710. MR 1731465, DOI 10.1007/s002080050332
- A. Ya. Dubovickiĭ, On the structure of level sets of differentiable mappings of an $n$-dimensional cube into a $k$-dimensional cube, Izv. Akad. Nauk SSSR Ser. Mat. 21 (1957), 371–408 (Russian). MR 0094424
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- T. W. Körner, A dense arcwise connected set of critical points—molehills out of mountains, J. London Math. Soc. (2) 38 (1988), no. 3, 442–452. MR 972129, DOI 10.1112/jlms/s2-38.3.442
- Pekka Koskela, The degree of regularity of a quasiconformal mapping, Proc. Amer. Math. Soc. 122 (1994), no. 3, 769–772. MR 1204381, DOI 10.1090/S0002-9939-1994-1204381-8
- B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, vol. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967. MR 0212575
- Alec Norton, A critical set with nonnull image has large Hausdorff dimension, Trans. Amer. Math. Soc. 296 (1986), no. 1, 367–376. MR 837817, DOI 10.1090/S0002-9947-1986-0837817-2
- Alec Norton, Functions not constant on fractal quasi-arcs of critical points, Proc. Amer. Math. Soc. 106 (1989), no. 2, 397–405. MR 969524, DOI 10.1090/S0002-9939-1989-0969524-8
- Alec Norton and Charles Pugh, Critical sets in the plane, Michigan Math. J. 38 (1991), no. 3, 441–459. MR 1116500, DOI 10.1307/mmj/1029004393
- Stephen Semmes, On the nonexistence of bi-Lipschitz parameterizations and geometric problems about $A_\infty$-weights, Rev. Mat. Iberoamericana 12 (1996), no. 2, 337–410. MR 1402671, DOI 10.4171/RMI/201
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Pekka Tukia, A quasiconformal group not isomorphic to a Möbius group, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 1, 149–160. MR 639972, DOI 10.5186/aasfm.1981.0625
- H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63–89.
- H. Whitney, A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), 514–517.
- Y. Yomdin, Surjective mappings whose differential is nowhere surjective, Proc. Amer. Math. Soc. 111 (1991), no. 1, 267–270. MR 1039267, DOI 10.1090/S0002-9939-1991-1039267-2
Bibliographic Information
- Piotr Hajłasz
- Affiliation: Institute of Mathematics, Warsaw University, ul. Banacha 2, 02–097 Warszawa, Poland
- MR Author ID: 332316
- Email: hajlasz@mimuw.edu.pl
- Received by editor(s): October 16, 2001
- Received by editor(s) in revised form: May 29, 2002
- Published electronically: February 6, 2003
- Additional Notes: This work was supported by the KBN grant no. 2 PO3A 028 22.
- Communicated by: Juha M. Heinonen
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3463-3467
- MSC (2000): Primary 26B05; Secondary 26B35, 28A80
- DOI: https://doi.org/10.1090/S0002-9939-03-06913-2
- MathSciNet review: 1991757