On a subspace perturbation problem
HTML articles powered by AMS MathViewer
- by Vadim Kostrykin, Konstantin A. Makarov and Alexander K. Motovilov
- Proc. Amer. Math. Soc. 131 (2003), 3469-3476
- DOI: https://doi.org/10.1090/S0002-9939-03-06917-X
- Published electronically: February 14, 2003
Abstract:
We discuss the problem of perturbation of spectral subspaces for linear self-adjoint operators on a separable Hilbert space. Let $A$ and $V$ be bounded self-adjoint operators. Assume that the spectrum of $A$ consists of two disjoint parts $\sigma$ and $\Sigma$ such that $d=\text {dist}(\sigma , \Sigma )>0$. We show that the norm of the difference of the spectral projections \[ \mathsf {E}_A(\sigma )\quad \text {and} \quad \mathsf {E}_{A+V}\big (\{\lambda | \mathrm {dist}(\lambda , \sigma )<d/2\}\big )\] for $A$ and $A+V$ is less than one whenever either (i) $\|V\|<\frac {2}{2+\pi }d$ or (ii) $\|V\|<\frac {1}{2}d$ and certain assumptions on the mutual disposition of the sets $\sigma$ and $\Sigma$ are satisfied.References
- Vadim M. Adamjan and Heinz Langer, Spectral properties of a class of rational operator valued functions, J. Operator Theory 33 (1995), no. 2, 259–277. MR 1354980
- N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space, Dover Publications, Inc., New York, 1993. Translated from the Russian and with a preface by Merlynd Nestell; Reprint of the 1961 and 1963 translations; Two volumes bound as one. MR 1255973
- J. Avron, R. Seiler, and B. Simon, The index of a pair of projections, J. Funct. Anal. 120 (1994), no. 1, 220–237. MR 1262254, DOI 10.1006/jfan.1994.1031
- Rajendra Bhatia, Chandler Davis, and Alan McIntosh, Perturbation of spectral subspaces and solution of linear operator equations, Linear Algebra Appl. 52/53 (1983), 45–67. MR 709344, DOI 10.1016/0024-3795(83)80007-X
- Rajendra Bhatia, Chandler Davis, and Paul Koosis, An extremal problem in Fourier analysis with applications to operator theory, J. Funct. Anal. 82 (1989), no. 1, 138–150. MR 976316, DOI 10.1016/0022-1236(89)90095-5
- Chandler Davis, Separation of two linear subspaces, Acta Sci. Math. (Szeged) 19 (1958), 172–187. MR 98980
- H. Davenport, On Waring’s problem for cubes, Acta Math. 71 (1939), 123–143. MR 26, DOI 10.1007/BF02547752
- Chandler Davis and W. M. Kahan, The rotation of eigenvectors by a perturbation. III, SIAM J. Numer. Anal. 7 (1970), 1–46. MR 264450, DOI 10.1137/0707001
- R. McEachin, Closing the gap in a subspace perturbation bound, Linear Algebra Appl. 180 (1993), 7–15. MR 1206407, DOI 10.1016/0024-3795(93)90522-P
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
Bibliographic Information
- Vadim Kostrykin
- Affiliation: Fraunhofer-Institut für Lasertechnik, Steinbachstraße 15, D-52074, Aachen, Germany
- Email: kostrykin@ilt.fhg.de, kostrykin@t-online.de
- Konstantin A. Makarov
- Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
- Email: makarov@math.missouri.edu
- Alexander K. Motovilov
- Affiliation: Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
- Address at time of publication: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
- Email: motovilv@thsun1.jinr.ru
- Received by editor(s): March 29, 2002
- Received by editor(s) in revised form: May 30, 2002
- Published electronically: February 14, 2003
- Communicated by: Joseph A. Ball
- © Copyright 2003 by the authors
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3469-3476
- MSC (2000): Primary 47A55, 47A15; Secondary 47B15
- DOI: https://doi.org/10.1090/S0002-9939-03-06917-X
- MathSciNet review: 1991758