FRACTALS AND DISTRIBUTIONS ON THE N-TORUS

VICTOR L. SHAPIRO

(Communicated by Andreas Seeger)

Abstract. This paper establishes non-Cartesian product sets, called fractal carpets and fractal foam, as sets of uniqueness for a class of trigonometric series.

1. Introduction

Operating in \(\mathbb{R}^N \), \(N \geq 2 \), with \((x, y) = x_1 y_1 + \cdots + x_N y_N, |x| = (x, x)^{1/2} \), and \(\alpha x + \beta y = (\alpha x_1 + \beta y_1, \ldots, \alpha x_N + \beta y_N) \), we call

\[T_N = \{ x = (x_1, \ldots, x_N) : 0 \leq x_j < 1, j = 1, \ldots, N \} \]

the \(N \)-torus. In the sequel, working mod 1 in each variable, we shall describe fractal sets on \(T_N \), called carpets in two dimensions and fractal foam in three dimensions (see [M, p. 133]), which will be sets of uniqueness for a class of distributions on the \(N \)-torus. The results to be presented here constitute an extension of our previous work, [Sh1], but now, unlike before, we show that the sets of uniqueness can be non-Cartesian product sets. We illustrate this fact with two examples.

[Sh1] was motivated by the two-dimensional results in [Sh2] and analogous one-dimensional results to be found in [Z1], [Z2], [KS], and [Sa].

We employ the notion of distributions as defined in [BJS, p. 168]. In particular, a distribution \(S \) on \(T_N \), also called a periodic distribution, is a real linear functional on \(\mathcal{D}(T_N) \), the class of real functions in \(\mathcal{C}^\infty(\mathbb{R}^N) \) which are periodic of period one in each variable, with the property that

\[(1.1) \text{ if } \phi_k \in \mathcal{D}(T_N) \text{ and } \|\phi_k\|_t \to 0 \text{ as } k \to \infty \text{ for every } t > 0, \text{ then } S(\phi_k) \to 0, \]

where \(\|\phi_k\|_t \) is defined in (1.5) below. We will denote the class of such \(S \) by \(\mathcal{D}'(T_N) \).

For \(S \in \mathcal{D}'(T_N) \), we set

\[S^\wedge(m) = S[\cos 2\pi(m, x)] - iS[\sin 2\pi(m, x)] \]

for every integral lattice point \(m \) and observe from [BJS, p. 168] that there exists a positive integer \(k \) such that

\[\sum_m |S^\wedge(m)| (|m| + 1)^{-k} < \infty. \]

Received by the editors July 3, 2001 and, in revised form, May 25, 2002.

2000 Mathematics Subject Classification. Primary 42B35, 46F99; Secondary 42B05, 05A18.

Key words and phrases. Fractal, carpet, distribution, \(N \)-torus.
Also, we have from this last-named reference that for \(\phi \in \mathcal{D}(T_N) \),

\[
S(\phi) = \sum_{m} S^\wedge(m) \phi^\wedge(-m),
\]

where

\[
\phi^\wedge(m) = \int_{T_N} e^{-2\pi i (m,x)} \phi(x) \, dx.
\]

Corresponding to [BJS, p. 166], we also have for \(t \) an integer

\[
\|\phi\|^2_t = \sum_{m} [1 + (2\pi)^2 |m|^2]^t |\phi^\wedge(m)|^2.
\]

In this paper, we deal with a subclass of \(\mathcal{D}'(T_N) \); namely the following:

\[
B(T_N) = \{ S \in \mathcal{D}'(T_N) : \lim_{|m| \to \infty} |S^\wedge(m)| = 0 \}.
\]

Next, we observe that the set \(E \subset T_N \) is closed in the torus topology if and only if the set \(E^* \) is a closed set in \(\mathbb{R}^N \) where \(E^* = \bigcup_m \{ E + m \} \). If \(\phi \in \mathcal{D}(T_N) \), we designate the set \(\text{supp} (\phi) \), called the support of \(\phi \), by the following:

\[
\text{supp} (\phi) = \{ x \in T_N : \phi(x) \neq 0 \}^\sim
\]

where \(^\sim \) denotes the closure in the torus topology. Also, given \(G \subset T_N \) open in the torus topology and \(S \in \mathcal{D}'(T_N) \), we define \(S = 0 \) in \(G \) to mean

\[
S(\phi) = 0 \quad \forall \phi \in \mathcal{D}(T_N) \text{ such that } \text{supp} (\phi) \subset G.
\]

A set \(E \subset T_N \) closed in the torus topology will be called a \(V \)-set if the following holds:

(i) \(\exists \{ p^k \}_{k=1}^\infty \), a sequence of integral lattice points, with \(p^k = (p^k_1, \ldots, p^k_N) \) where \(p^k_j \) is a positive integer for \(j = 1, \ldots, N \), and also

\[
\lim_{k \to \infty} p^k_j = \infty \quad \text{for } j = 1, \ldots, N;
\]

(ii) \(x \in E \Rightarrow (p^k_1 x_1, \ldots, p^k_N x_N) \in E \mod 1 \) in each variable \(\forall k \).

A set \(Z \subset T_N \) which is of \(N \)-dimensional Lebesgue measure zero and also closed in the torus topology will be called a set of uniqueness for the class \(\mathcal{B}(T_N) \), defined in (1.6), if the following holds:

\[
S(\phi) = 0 \quad \forall \phi \in \mathcal{D}(T_N) \quad \text{and } S = 0 \text{ in } T_N \setminus Z \Rightarrow S \equiv 0.
\]

We shall prove the following theorem.

Theorem. Suppose \(Z \subset T_N \) is a closed set in the torus topology and also of \(N \)-dimensional Lebesgue measure zero. Suppose furthermore that \(Z \) is a \(V \)-set. Then \(Z \) is a set of uniqueness for the class \(\mathcal{B}(T_N) \).

2. Fundamental lemmas

If \(\lambda \in \mathcal{D}(T_N) \) and \(S \in \mathcal{D}'(T_N) \), then we define \(\lambda S \in \mathcal{D}'(T_N) \) as follows:

\[
\lambda S(\phi) = S(\lambda \phi) \quad \forall \phi \in \mathcal{D}(T_N).
\]

It is easy to check that this definition is all right because it meets the condition set forth in (1.1).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let m be a fixed integral lattice point in \mathbb{R}^N. Then if $\lambda \in \mathcal{D}(T_N)$, it follows from (1.4) that
\[
\lambda e^{-2\pi i (m, x)} = \sum_{\mathbf{p}} \lambda^{\wedge}(\mathbf{p}) e^{-2\pi i (m - \mathbf{p}, x)},
\]
and consequently from (1.2), (1.3), and (2.1) that for $S \in \mathcal{D}'(T_N)$,
\[
(\lambda S)^\wedge(m) = \sum_{\mathbf{p}} \lambda^{\wedge}(\mathbf{p}) S^{\wedge}(m - \mathbf{p}).
\]

The first lemma that we establish is the following:

Lemma 1. Let $S \in \mathcal{D}'(T_N)$, $\lambda \in \mathcal{D}(T_N)$, and $G \subset T_N$ be open in the torus topology. Suppose $S = 0$ in G, and λ has its support in G. Then the distribution λS is such that $\lambda S = 0$.

To prove the lemma, let $\phi \in \mathcal{D}(T_N)$. Then $\lambda \phi$ has its support in G. Consequently, it follows from (2.1) and the hypothesis of the lemma that $\lambda S(\phi) = 0$, which establishes the lemma.

Lemma 2. Let $Z \subset T_N$ be a set closed in the torus topology and of N-dimensional Lebesgue measure zero. Suppose that

1. $S \in \mathcal{B}(T_N)$ and that $S = 0$ in $T_N \setminus Z$;
2. $\{\lambda_k\}_{k=1}^\infty$ with the following properties: (i) $\lambda_k \in \mathcal{D}(T_N)$ $\forall k$, (ii) $\text{supp} \ (\lambda_k) \subset T_N \setminus Z$ $\forall k$, (iii) $\exists C > 0$ such that $\sum_{m} |\lambda_k^{\wedge}(m)| \leq C$ $\forall k$, (iv) $\lim_{k \to \infty} |\lambda_k^{\wedge}(m)| = 0$ $\forall m \neq 0$, and (v) $\lim_{k \to \infty} \lambda_k^{\wedge}(0) = a_0 \neq 0$.

Then $S \equiv 0$.

To prove the lemma, we observe from (ii) that for each k the support of λ_k is in the open set $T_N \setminus Z$. Furthermore, $S = 0$ in $T_N \setminus Z$. Hence, it follows from Lemma 1 that
\[
\lambda_k S \equiv 0 \quad \forall k.
\]
Consequently, we obtain from (2.2) that
\[
0 = \sum_{\mathbf{p}} \lambda_k^{\wedge}(\mathbf{p}) S^{\wedge}(m - \mathbf{p})
\]
for a fixed integral lattice point m. But then we have that
\[
(2.3) \quad -\lambda_k^{\wedge}(0) S^{\wedge}(m) = \sum_{\mathbf{p}
eq \mathbf{0}} \lambda_k^{\wedge}(\mathbf{p}) S^{\wedge}(m - \mathbf{p}).
\]
Since m is a fixed integral lattice point, given $\varepsilon > 0$, we have from (1.6) that there exists $R_0 > 1$ such that $|S^{\wedge}(m - \mathbf{p})| < \varepsilon$ for $|\mathbf{p}| \geq R_0$. From (iii) in the lemma and from (2.3), we then infer that
\[
|\lambda_k^{\wedge}(0) S^{\wedge}(m)| < \sum_{1 \leq |\mathbf{p}| < R_0} |\lambda_k^{\wedge}(\mathbf{p}) S^{\wedge}(m - \mathbf{p})| + \varepsilon C.
\]
Passing to the limit as $\varepsilon \to 0$ on both sides of this last inequality and simultaneously making use of (iv) and (v) of the lemma gives us that
\[
|a_0 S^{\wedge}(m)| \leq \varepsilon C.
\]
But ε is an arbitrary positive number and $a_0 \neq 0$; so we conclude that $S^{\wedge}(m) = 0$ for every lattice point m. It then follows from (1.3) that $S(\phi) = 0 \quad \forall \phi \in \mathcal{D}(T_N)$. Therefore, $S \equiv 0$, and the proof of the lemma is complete.
3. PROOF OF THE THEOREM

To prove the Theorem, given that \(Z \subset T_N \) is a closed set in the torus topology which is of \(N \)-dimensional Lebesgue measure zero and which is also a \(\mathcal{V} \)-set, we shall show the existence of a sequence \(\{ \lambda_k \}_{k=1}^\infty \) which meets the conditions (2)(i)-2(v) in the hypothesis of Lemma 2. The Theorem will then follow from definition (1.10) and Lemma 2.

It is clear from the assumptions concerning \(Z \) that there is an \(x_0 \in T_N \) and open ball with center \(x_0 \) and radius \(r_0 > 0 \), which we call \(B(x_0, r_0) \), such that \(Z \cap B(x_0, r_0) = \emptyset \). Hence, there is

\[
0 < a_j^1 < b_j^1 < a_j^2 < b_j^2 < b_j^3 < 1, \ j = 1, \ldots, N,
\]

with

\[
Q^l = [a_{1}^{l}, b_{1}^{l}] \times \cdots \times [a_{N}^{l}, b_{N}^{l}], \ l = 1, 2, 3,
\]

such that \(Z \cap Q^1 = \emptyset \). Since \(Q^2 \subset Q^3 \) are rectangular parallelepipeds with the conditions in (3.1) holding, it is well known that there is a function \(\lambda(x) \in \mathcal{D}(T_N) \) with the follow in \(g \) properties:

(i) \(\lambda(x) = 1 \) for \(x \in Q^3 \);
(ii) \(\lambda(x) = 0 \) for \(x \in T_N \setminus Q^2 \), i.e., \(\text{supp} (\lambda) \subset Q^2 \);
(iii) \(\lambda(x) \preceq 1 \) for \(x \in T_N \).

To obtain the sequence \(\{ \lambda_k \}_{k=1}^\infty \) alluded to in the first paragraph above, we let \(\{ p^k \}_{k=1}^\infty \) be the sequence of integral lattice points introduced in (1.9)(i), (ii) used in the definition of \(Z \) being a \(\mathcal{V} \)-set, and we define

\[
\lambda_k(x) = \lambda(p^k_{1}x_1, \ldots, p^k_{N}x_N) \ \forall k \text{ and } \forall x \in \mathbb{R}^N.
\]

Since \(p^k_{j} \) is a positive integer for \(j = 1, \ldots, N \), and since \(\lambda \in \mathcal{D}(T_N) \), it follows from (3.3) that \(\lambda_k \in \mathcal{D}(T_N) \). Hence, (2)(i) in Lemma 2 for our sequence \(\{ \lambda_k \} \) is established.

To establish (2)(ii) in Lemma 2, we observe that both \(Q^1 \) and \(Z \) are compact subsets of \(T_N \) in the torus topology and \(Z \cap Q^1 = \emptyset \). Consequently, \(\exists \varepsilon_0 > 0 \) such that

\[
B(x, \varepsilon_0) \cap Q^{1*} = \emptyset \quad \text{for } x \in Z^* \tag{3.4}
\]

where \(Q^{1*} = \bigcup_m \{ Q^1 + m \} \) and \(Z^* = \bigcup_m \{ Z + m \} \). Now for \(k \) fixed, let

\[
|p^k| = \sum_{j=1}^{N} |p^k_{j}|.
\]

Then it follows from (3.4) with \(\varepsilon_1 = \varepsilon_0 / |p^k| \) that

\[
x + (p^k_{1}y_1, \ldots, p^k_{N}y_N) \notin Q^{1*} \quad \text{for } |y| < \varepsilon_1 \text{ and } x \in Z^*.
\]

By (1.9)(ii), \(x = (x_1, \ldots, x_N) \in Z \implies (p^k_{1}x_1, \ldots, p^k_{N}x_N) \in Z^* \). Therefore if \(x \in Z \) and \(|y| < \varepsilon_1 \),

\[
(p^k_{1}x_1, \ldots, p^k_{N}x_N) + (p^k_{1}y_1, \ldots, p^k_{N}y_N) \notin Q^{1*} \tag{3.5}
\]

From (3.1) and (3.2), we see that \(Q^{2*} \subset Q^{1*} \) and from (ii) in the properties of \(\lambda(x) \) that \(\text{supp} (\lambda) \subset Q^2 \). Consequently, it follows from (3.3) and (3.5) that if \(x \in Z \) and \(|y| < \varepsilon_1 \), \(\lambda_k(x + y) = 0 \). Hence, \(Z \cap \text{supp} (\lambda_k) = \emptyset \), and (2)(ii) of Lemma 2 is established.
To establish (2)(iii) in Lemma 2, we observe that
\[(3.6) \quad \lambda(x) = \sum_m \lambda^\wedge(m) e^{2\pi i (m, x)} \]
where
\[(3.7) \quad \sum_m |\lambda^\wedge(m)| = C < \infty. \]
It follows therefore from (3.3) that
\[(3.8) \quad \lambda_k(x) = \lambda^\wedge(0) + \sum_{m \neq 0} \lambda^\wedge(m) e^{2\pi i (p^k_1 x_1 + \cdots + p^k_N x_N)} \]
for \(x \in T_N \). Hence,
\[\sum_m |\lambda_k^\wedge(m)| = \sum_m |\lambda^\wedge(m)| = C < \infty, \]
which fact establishes (2)(iii) in Lemma 2.

To establish (2)(iv) in Lemma 2, let \(m_0 \) be an arbitrary but fixed integral lattice with \(m_0 \neq 0 \). It follows from (1.9) that \(\exists k_0 > 0 \) such that for \(k > k_0 \)
\[\left(\sum_{j=1}^N |p^k_j m_j|^2 \right)^{1/2} \geq \min(p^k_1, \ldots, p^k_N) \geq |m_0| + 1 \]
for all \(m \neq 0 \). Consequently, it follows from (3.8) that for \(k > k_0 \),
\[\lambda_k^\wedge(m_0) = 0, \]
and (2)(iv) in Lemma 2 is established.

Next, we use (3.8) once again and obtain that
\[\lambda_k^\wedge(0) = \lambda^\wedge(0) \quad \forall k. \]
From the defining properties (i), (ii), (iii) of \(\lambda(x) \) stated above, we see that
\[0 < \int_{T_N} \lambda(x) = \lambda^\wedge(0). \]
We conclude from these last two facts that indeed \(\lim_{k \to \infty} \lambda_k^\wedge(0) = \alpha_0 \neq 0 \). Hence (2)(v) in Lemma 2 is established, and the proof of the theorem is complete.

4. Examples of sets of uniqueness

In order to show that a set \(Z \subset T_N \) is a set of uniqueness for the class \(\mathcal{B}(T_N) \), according to the theorem, we need only show that (i) it is closed in the torus sense, (ii) it is of \(N \)-dimensional Lebesgue measure zero, and (iii) it is a \(V \)-set. We shall do this for two different examples: the first will take place in dimension \(N = 3 \) and the second in dimension \(N = 2 \). Each example will constitute a non-Cartesian product set. It will also be clear that both examples hold for \(N \geq 3 \), but the notation in the higher dimensional cases is considerably more cumbersome. Also, example 2 covers example 1 in dimension \(N = 2 \).

For \(N = 3 \), the set we will deal with is alluded to in Mandelbrot’s book as triadic fractal foam [M, p. 133], and we will refer to it as \(TFF \). We will define \(TFF \) in \(\bar{T}_3 \) where
\[\bar{T}_3 = \{ x = (x_1, x_2, x_3) : 0 \leq x_j \leq 1, j = 1, 2, 3 \}. \]
Our set of uniqueness Z will then be
\begin{equation}
Z = TFF \cap T_3.
\end{equation}

To define TFF, subdivide T_3 into 27 closed congruent cubes by cutting T_3 with planes parallel to the three axes, i.e., $x_j = 1/3$, $2/3$ for $j = 1, 2, 3$. Each cube has a distinguished point within it, namely $x^{j_1, 1}$ which is the point with smallest Euclidean norm in each cube. Each $x^{j_1, 1}$ corresponds to a unique triple
\begin{equation}
x^{j_1, 1} \longleftrightarrow (\varepsilon_1, \delta_1, \zeta_1)
\end{equation}
with $x^{j_1, 1} = (\varepsilon_1/3, \delta_1/3, \zeta_1/3)$ where $\varepsilon_1, \delta_1, \zeta_1$ run through the numbers 0, 1, 2 with one caveat: we do not allow the triple with $\varepsilon_1 = \delta_1 = \zeta_1 = 1$ since we are going to remove the open cube corresponding to this point. We shall define an ordering on different triples of the nature $(\varepsilon_1, \delta_1, \zeta_1) \neq (\varepsilon'_1, \delta'_1, \zeta'_1)$ as follows:
\begin{equation}
(\varepsilon_1, \delta_1, \zeta_1) \prec (\varepsilon'_1, \delta'_1, \zeta'_1)
\end{equation}

(i) $\varepsilon_1 < \varepsilon'_1$ or (ii) $\varepsilon_1 = \varepsilon'_1$ and $\delta_1 < \delta'_1$ or (iii) $\varepsilon_1 = \varepsilon'_1$ and $\delta_1 = \delta'_1$ and $\zeta_1 < \zeta'_1$.

This also imposes an ordering on $\{x^{j_1, 1}\}$ via (4.2).

Now we have 26 triples, and we count them out according to this \prec-ordering, giving us $\{x^{j_1, 1}\}_{j_1=1}^{26}$. Thus $x^{1, 1} = (0, 0, 0)$, $x^{2, 1} = (0, 0, 1/3)$, $x^{3, 1} = (0, 0, 2/3)$, $x^{4, 1} = (0, 1/3, 0)$, ..., $x^{26, 1} = (2/3, 2/3, 2/3)$. The closed cube which has $x^{j_1, 1}$ as its distinguished point, we label $I^{j_1, 1}$. We then define $I^1 \subset T_3$ to be the closed set
\begin{equation}
I^1 = \bigcup_{j_1=1}^{26} I^{j_1, 1}.
\end{equation}

In each of the 26 cubes, which have sides of length 1/3, we now perform the same operation as above, obtaining $(26)^2$ cubes, which now have sides of length $(1/3)^2$. Each of these last-mentioned cubes has a distinguished point
\[x^{j_2, 2} = x^{j_1, 1} + (\varepsilon_2/3^2, \delta_2/3^2, \zeta_2/3^2)\]
where $\varepsilon_2, \delta_2, \zeta_2$ run through the numbers 0, 1, 2, and we do not allow the triple with $\varepsilon_2 = \delta_2 = \zeta_2 = 1$. These triples have an ordering imposed on them by (4.3) which in turn gives an ordering on $\{x^{j_2, 2}\}$ defined as follows:
\begin{equation}
x^{j_2, 2} \prec x^{j'_2, 2} \text{ means (i) } x^{j_1, 1} \prec x^{j'_1, 1} \text{ or (ii) } x^{j_1, 1} = x^{j'_1, 1} \text{ and } (\varepsilon_2, \delta_2, \zeta_2) \prec (\varepsilon'_2, \delta'_2, \zeta'_2).
\end{equation}

We then count out the $(26)^2$ points according to this ordering and obtain $\{x^{j_2, 2}\}_{j_2=1}^{26}$. The closed cube containing $x^{j_2, 2}$ as its distinguished point we call $I^{j_2, 2}$. We then define $I^2 \subset I^1 \subset T_3$ to be the closed set
\begin{equation}
I^2 = \bigcup_{j_2=1}^{26} I^{j_2, 2}.
\end{equation}

In each of the $(26)^2$ cubes which have sides of length $(1/3)^2$, we now perform the same operation as before obtaining $(26)^3$ cubes with each having sides of length $(1/3)^3$. We get distinguished points in each of these cubes and put an ordering on them similar to the procedure in (4.4) to obtain $\{x^{j_3, 3}\}_{j_3=1}^{26}$. Next, in a procedure similar to (4.5), we get the closed set I^3 with $I^3 \subset I^2 \subset I^1 \subset T_3$.

Continuing in this manner, we get the decreasing sequence of closed sets \(\{ I^n \}_{n=1}^\infty \) with \(I^{n+1} \subset I^n \subset \mathbb{T}_3 \) where each \(I^n \) consists of \((26)^n\) cubes each with sides of length \((1/3)^n\). The set \(TFF \) is then defined to be

\[
TFF = \bigcap_{n=1}^\infty I^n.
\]

With \(Z \) defined by (4.1) where \(TFF \) is defined by (4.6), we see that \(Z \) is closed in the torus sense because every point in the boundary of \(\mathbb{T}_3 \) is contained in \(TFF \). Also since the Lebesgue measure of each \(I^n \) in (4.6) is \((26/27)^n\), we see that \(TFF \) is of \(N \)-dimensional Lebesgue measure zero; hence by (4.1) the same can be said of \(Z \).

Consequently, we conclude from the conditions in the hypothesis of the theorem to show that \(Z \) is a set of uniqueness for the class \(\mathcal{B}(T_3) \); it only remains to show that \(Z \) is a \(\mathcal{V} \)-set according to the definition given in (1.9). We claim

\[
x \in Z \Rightarrow (3^kx_1, 3^kx_2, 3^kx_3) \in Z \mod 1 \text{ in each variable}
\]

for \(k \) a positive integer where \(x = (x_1, x_2, x_3) \). Once (4.7) is established, it then follows from (1.9) that \(Z \) is indeed a \(\mathcal{V} \)-set. To show that (4.7) holds, it is clearly sufficient to show that it holds in the special case when \(k = 1 \), i.e.,

\[
x \in Z \Rightarrow (3x_1, 3x_2, 3x_3) \in Z \mod 1 \text{ in each variable.}
\]

It follows from the definition of \(TFF \) in (4.6) that given \(x_o \in TFF \), \(\exists \{x^{j,n}_o\}_{n=1}^\infty \) where each \(x^{j,n}_o \) is a distinguished point of one of the \((26)^n\) cubes in \(I^n \) of sides \((1/3)^n\) such that

\[
\|x^{j,n}_o - x_o\| \to 0 \text{ as } n \to \infty.
\]

Consequently, to show that (4.8) holds it is sufficient to show that it holds when \(x \) is a distinguished point \(x^{j,n}_o \).

If \(x = x^{j+1,n}_o \), then it follows from the enumeration of the \(26 \) such points given below (4.3) that the conclusion in (4.8) holds. Hence from the above discussion \(Z \) will be a \(\mathcal{V} \)-set, if we show the following:

Given \(x^{j,n}_o = (x^{j,n}_1, x^{j,n}_2, x^{j,n}_3) \) a distinguished point in an \(I^{j,n} \), then

\[
(3x^{j,n}_1, 3x^{j,n}_2, 3x^{j,n}_3) = x^{j,n-1,n-1}_o \mod 1 \text{ in each variable}
\]

for \(n \geq 2 \) where \(x^{j,n-1,n-1}_o \) is a distinguished point in an \(I^{j,n-1,n-1} \).

It is clear from the representation of \(x^{j+2,n} \) given above (4.4) that

\[
x^{j+2,n} = \left(\frac{\varepsilon_1}{3} + \frac{\varepsilon_2}{3^2} \right) + \left(\frac{\delta_1}{3} \right) + \left(\frac{\zeta_1}{3} \right)
\]

where \(\varepsilon_i, \delta_i, \zeta_i \) run through the numbers 0, 1, 2, and we do not allow \(\varepsilon_i = \delta_i = \zeta_i = 1 \) for \(i = 1, 2 \).

Exactly similar reasoning shows that

\[
x^{j,n} = \left(\sum_{i=1}^n \frac{\varepsilon_i}{3^i} \right) + \left(\sum_{i=1}^n \frac{\delta_i}{3^i} \right) + \left(\sum_{i=1}^n \frac{\zeta_i}{3^i} \right)
\]

where now \(\varepsilon_i = \delta_i = \zeta_i = 1 \) is not allowed for \(i = 1, ..., n \). From (4.10), we see that

\[
(3x^{j,n}_1, 3x^{j,n}_2, 3x^{j,n}_3) = \left(\varepsilon_1 + \sum_{i=1}^{n-1} \frac{\varepsilon_{i+1}}{3^i}, \delta_1 + \sum_{i=1}^{n-1} \frac{\delta_{i+1}}{3^i}, \zeta_1 + \sum_{i=1}^{n-1} \frac{\zeta_{i+1}}{3^i} \right).
\]

But \(\varepsilon_i, \delta_i, \) and \(\zeta_i \) are each non-negative integers, and we conclude from this last equality that (4.9) does indeed hold. Hence \(Z \) defined by (4.1) is a \(\mathcal{V} \)-set, and our example is complete.
Our next example will take place in dimension $N = 2$. We will call it a generalized carpet and refer to it as GC_{pq} where p and q are both positive integers strictly greater than 2. The set GC_{pq} will be a subset of T_2 where

$$T_2 = \{x = (x_1, x_2) : 0 \leq x_j \leq 1, \ j = 1, 2\}.$$

In particular, when $p = q = 3$, GC_{pq} will be the set referred to in the literature as the Sierpinski carpet [M, p. 144].

To define GC_{pq}, subdivide T_2 into pq closed congruent rectangles by cutting T_2 with lines parallel to the two axes, i.e., $x_1 = 1/p, 2/p, ..., (p - 1)/p, x_2 = 1/q, 2/q, ..., (q - 1)/q$. Each rectangle has a distinguished point within it, namely $x^{j_1, 1}$ which is the point with smallest Euclidean norm in each rectangle. Each $x^{j_1, 1}$ corresponds to a unique double

$$x^{j_1, 1} \rightarrow (\varepsilon_1, \delta_1)$$

with $x^{j_1, 1} = (\varepsilon_1/p, \delta_1/q)$ where ε_1 and δ_1 run through the numbers $0, 1, ..., p - 1$ and $0, 1, ..., q - 1$, respectively. There is a caveat however; the doubles with $\varepsilon_1 = 1, ..., p - 2$, and simultaneously $\delta_1 = 1, ..., q - 2$, are not allowed, for the rectangles corresponding to these points will be removed, i.e., the middle $(p - 2)(q - 2)$ rectangles will be deleted. An ordering on different doubles of the nature $(\varepsilon_1, \delta_1) \neq (\varepsilon'_1, \delta'_1)$ is then defined as follows:

$$(\varepsilon_1, \delta_1) \prec (\varepsilon'_1, \delta'_1)$$

(i) $\varepsilon_1 < \varepsilon'_1$ or (ii) $\varepsilon_1 = \varepsilon'_1$ and $\delta_1 < \delta'_1$. This also imposes an ordering on $\{x^{j_1, 1}\}^{\gamma}_{j_1=1}$ via (4.11) where γ is the integer $\gamma = pq - (p - 2)(q - 2)$.

In particular, we see that $x^{3, 1} = (0, 0), x^{2, 1} = (0, 1/q), x^{3, 1} = (0, 2/q), ..., x^{\gamma, 1} = ((p - 1)/p, (q - 1)/q)$. We also observe that $x^{0, 1} = (0, (q - 1)/q), x^{0, 1} = (1/p, 0)$, and $x^{q + 2, 1} = (1/p, (q - 1)/q)$. The closed rectangle which has $x^{3, 1}$ as its distinguished point we label $I^{3, 1}$. We then define $I^1 \subset T_2$ to be the closed set

$$I^1 = \bigcup_{j_1=1}^{\gamma} I^{j_1, 1}.$$

In each of the γ closed rectangles, which have sides of length $1/p$ and $1/q$, we now perform the same operation as above, obtaining γ^2 closed rectangles, which now have sides of length $(1/p)^2$ and $(1/q)^2$. Each of these last-mentioned rectangles has a distinguished point within it, namely $x^{j_2, 2}$, where

$$x^{j_2, 2} = x^{j_1, 1} + (\varepsilon_2/p^2, \delta_2/q^2),$$

and where ε_2 and δ_2 run through the numbers $0, 1, ..., p - 1$ and $0, 1, ..., q - 1$, respectively. Also, we do not allow the doubles with $\varepsilon_2 = 1, ..., p - 2$, and simultaneously $\delta_2 = 1, ..., q - 2$. The doubles $(\varepsilon_2, \delta_2) \neq (\varepsilon'_2, \delta'_2)$ have an ordering imposed upon them by (4.12), which, in turn, imposes an ordering on the distinguished points given by $x^{j_2, 2} < x^{j'_2, 2}$ akin to the ordering given in (4.4). We then count out the γ^2 points according to this ordering and obtain $\{x^{j_2, 2}\}^{\gamma^2}_{j_2=1}$. The closed rectangle of sides $(1/p)^2$ and $(1/q)^2$ containing $x^{j_2, 2}$ as its distinguished point we call $I^{j_2, 2}$.
We then define $I^2 \subset I^1 \subset \bar{T}_2$ to be the closed set
\[I^2 = \bigcup_{j_2=1}^{\gamma^2} I^{j_2,2}. \]

Continuing in this manner, we get the decreasing sequence of closed sets \(\{I^n\}_{n=1}^{\infty} \) with \(I^{n+1} \subset I^n \subset \bar{T}_2 \) where each \(I^n \) consists of \(\gamma^n \) rectangles each with sides of length \((1/p)^n \) and \((1/q)^n \). The set \(GC_{pq} \) is then defined to be
\[(4.13) \quad GC_{pq} = \bigcap_{n=1}^{\infty} I^n. \]

Next, we define \(Z \) to be the set
\[(4.14) \quad Z = GC_{pq} \cap T_2, \]
and observe that \(Z \) is closed in the torus sense because every point in the boundary of \(\bar{T}_2 \) is contained in \(GC_{pq} \). Also, since the Lebesgue measure of each \(I^n \) is \((\gamma/pq)^n \) where \(\gamma = pq - (p-2)(q-2) \), we see from (4.13) and (4.14) that the 2-dimensional Lebesgue measure of \(Z \) is zero. Hence according to the conditions in the hypothesis of the theorem, to show that \(Z \) is a set of uniqueness for the class \(B(T_2) \), it only remains to show that \(Z \) is a \(\mathcal{V} \)-set, i.e., that the conditions set forth in (1.9) hold.

We claim
\[(4.15) \quad x \in Z \Rightarrow (p^{j_1}x_1, q^{j_2}x_2) \in Z \mod 1 \text{ in each variable} \]
for \(k \) a positive integer and with \(x = (x_1, x_2) \). Once (4.15) is established, then it follows from (1.9) that \(Z \) is indeed a \(\mathcal{V} \)-set. To show that (4.15) holds, it is clearly sufficient to show that it holds in the special case when \(k = 1 \), i.e.,
\[(4.16) \quad x \in Z \Rightarrow (px_1, qx_2) \in Z \mod 1 \text{ in each variable}. \]

Using the same argument that we used after (4.8), we see that to show that \(Z \) is a \(\mathcal{V} \)-set, we need only show that (4.16) holds for the special case when \(x = x^{j_n,n} \), a distinguished point in one of the closed rectangles \(I^{j_n,n} \) with sides \((1/p)^n \) and \((1/q)^n \).

If \(x = x^{j_n,1} \), then it follows from the enumeration of such points below (4.12) that (4.16) does indeed hold. Hence to show that \(Z \) is a \(\mathcal{V} \)-set, it only remains to establish the fact that (4.16) holds when \(x = x^{j_n,n} \) for \(n \geq 2 \). This will be accomplished if we show that the following fact holds:

Given \(x^{j_n,n} = (x_1^{j_n,n}, x_2^{j_n,n}) \), a distinguished point in an \(I^{j_n,n} \), then
\[(4.17) \quad (px_1^{j_n,n}, qx_2^{j_n,n}) = x^{j_{n-1},n-1} \mod 1 \text{ in each variable} \]
for \(n \geq 2 \) where \(x^{j_{n-1},n-1} \) is a distinguished point in an \(I^{j_{n-1},n-1} \).

It is clear from the representation of \(x^{j_1,2} \) given above that
\[x^{j_1,2} = \left(\frac{\varepsilon_1}{p}, \frac{\varepsilon_2}{q}, \delta_1 + \delta_2 \frac{q}{q} \right) \]
where \(\varepsilon_i \) and \(\delta_i \) run through the numbers \(0, ..., p-1, \) and \(0, ..., q-1 \), respectively, and we do not allow \(\varepsilon_i = 1, ..., p-2 \) and simultaneously \(\delta_i = 1, ..., q-2 \) for \(i = 1, 2 \). Exactly similar reasoning shows that
\[(4.18) \quad x^{j_n,n} = \left(\sum_{i=1}^{n} \frac{\varepsilon_i}{p^i}, \sum_{i=1}^{n} \delta_i \right) \]
where ε_i and δ_i are exactly as before, now with $i = 1, \ldots, n$. From (4.18), we see that
\[
(p_{x_1^{j_1}}, q_{x_2^{j_2}}) = \left(\varepsilon_1 + \sum_{i=1}^{n-1} \frac{\varepsilon_{i+1}}{p^i}, \delta_1 + \sum_{i=1}^{n-1} \frac{\delta_{i+1}}{q^i}\right).
\]
But ε_i and δ_i are each non-negative integers, and we conclude from this last equality and (4.18) that (4.17) does indeed hold. Hence, Z defined by (4.14) is a \mathcal{V}-set, and our example is complete.

In closing, we point out that the H^J-sets, defined in [Sh2] for dimension $N = 2$ and in [AW] for dimensions $N \geq 3$, can also be shown to be sets of uniqueness for the class $\mathcal{B}(T_N)$ with respect to distributions on the N-torus.

References

Department of Mathematics, University of California, Riverside, California 92521-0135

E-mail address: shapiro@math.ucr.edu