The $p$-exponent of the $K(1)_*$-local spectrum $\Phi SU(n)$
HTML articles powered by AMS MathViewer
- by Michael J. Fisher
- Proc. Amer. Math. Soc. 131 (2003), 3617-3621
- DOI: https://doi.org/10.1090/S0002-9939-03-06936-3
- Published electronically: February 26, 2003
- PDF | Request permission
Abstract:
Let $p$ be a fixed odd prime. In this paper we prove an exponent conjecture of Bousfield, namely that the $p$-exponent of the spectrum $\Phi SU(n)$ is $(n-1) + \nu _p((n-1)!)$ for $n \geq 2$. It follows from this result that the $p$-exponent of $\Omega ^{q} SU(n) \langle i \rangle$ is at least $(n-1) + \nu _p((n-1)!)$ for $n \geq 2$ and $i,q \geq 0$, where $SU(n) \langle i \rangle$ denotes the $i$-connected cover of $SU(n)$.References
- A. K. Bousfield, Uniqueness of infinite deloopings for $K$-theoretic spaces, Pacific J. Math. 129 (1987), no.ย 1, 1โ31. MR 901254, DOI 10.2140/pjm.1987.129.1
- A. K. Bousfield, Unstable localization and periodicity, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guรญxols, 1994) Progr. Math., vol. 136, Birkhรคuser, Basel, 1996, pp.ย 33โ50. MR 1397720
- A. K. Bousfield, The $K$-theory localizations and $v_1$-periodic homotopy groups of $H$-spaces, Topology 38 (1999), no.ย 6, 1239โ1264. MR 1690156, DOI 10.1016/S0040-9383(98)00052-4
- Donald M. Davis, Odd primary $b\textrm {o}$-resolutions and $K$-theory localization, Illinois J. Math. 30 (1986), no.ย 1, 79โ100. MR 822385
- Donald M. Davis and Mark Mahowald, $v_1$-localizations of finite torsion spectra and spherically resolved spaces, Topology 32 (1993), no.ย 3, 543โ550. MR 1231960, DOI 10.1016/0040-9383(93)90005-G
- Luke Hodgkin, On the $K$-theory of Lie groups, Topology 6 (1967), 1โ36. MR 214099, DOI 10.1016/0040-9383(67)90010-9
- Fred S. Roberts, Applied combinatorics, Prentice Hall, Inc., Englewood Cliffs, NJ, 1984. MR 735619
Bibliographic Information
- Michael J. Fisher
- Affiliation: Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015
- Address at time of publication: Department of Mathematics, California State University, Fresno, 5245 North Backer Avenue M/S PB 108, Fresno, California 93740
- Email: mfisher@csufresno.edu
- Received by editor(s): October 29, 2001
- Received by editor(s) in revised form: June 7, 2002
- Published electronically: February 26, 2003
- Communicated by: Paul Goerss
- © Copyright 2003 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 131 (2003), 3617-3621
- MSC (2000): Primary 55P42
- DOI: https://doi.org/10.1090/S0002-9939-03-06936-3
- MathSciNet review: 1991776