The nucleus for restricted Lie algebras

Authors:
David J. Benson and Daniel K. Nakano

Journal:
Proc. Amer. Math. Soc. **131** (2003), 3395-3405

MSC (2000):
Primary 20G10, 20G05

DOI:
https://doi.org/10.1090/S0002-9939-03-06939-9

Published electronically:
March 25, 2003

MathSciNet review:
1990628

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The nucleus was a concept first developed in the cohomology theory for finite groups. In this paper the authors investigate the nucleus for restricted Lie algebras. The nucleus is explicitly described for several important classes of Lie algebras.

**[BN]**C. P. Bendel and D. K. Nakano, Complexes and vanishing of cohomology for group schemes,*J. Algebra***214**(1999), 668-713. MR**2001a:16015****[Ben1]**D. J. Benson,*Representations and cohomology, II*, Cambridge Univ. Press, 1991. MR**93g:20099****[Ben2]**D. J. Benson, Cohomology of modules in the principal block of a finite group,*New York J. Math.***1**(1995), 196-205. MR**96h:20095****[Ben3]**D. J. Benson, The nucleus, and extensions between modules for a finite group,*Representations of Algebras*, Proceedings of the Ninth International Conference (Beijing 2000), Beijing Normal University Press, 2002.**[BCRi1]**D. J. Benson, J. F. Carlson and J. Rickard, Complexity and varieties for infinitely generated modules, II,*Math. Proc. Camb. Phil. Soc.***120**(1996), 597-615. MR**97f:20008****[BCRi2]**D. J. Benson, J. F. Carlson and J. Rickard, Thick subcategories of the stable module category,*Fundamenta Mathematicae***153**(1997), 59-80. MR**98g:20021****[BCR]**D. J. Benson, J. F. Carlson and G. R. Robinson, On the vanishing of group cohomology,*J. Algebra***131**(1990), 40-73. MR**91c:20073****[C1]**J. F. Carlson, Varieties for cohomology with twisted coefficients,*Acta Math. Sin. (Engl. Ser.)***15**(1999), 81-92. MR**2000f:20087****[C2]**J. F. Carlson, The thick subcategory generated by the trivial module,*Infinite Length Modules*, ed. Henning Krause and Claus Michael Ringel, Trends in Mathematics, Birkhäuser Verlag (2000), 285-296. MR**2001k:20005****[CR]**J. F. Carlson and G. R. Robinson, Varieties and modules with vanishing cohomology,*Math. Proc. Camb. Phil. Soc.***116**(1994), 245-251. MR**95c:20073****[CM]**D. H. Collingwood and W. M. McGovern,*Nilpotent Orbits in Semisimple Lie Algebras*, Van Nostrand Reinhold, 1993. MR**94j:17001****[CNP]**J. F. Carlson, D. K. Nakano and K. M. Peters, On the vanishing of extensions of modules over reduced enveloping algebras,*Math. Annalen***302**(1995), 541-560. MR**96f:17029****[FP1]**E. M. Friedlander and B. J. Parshall, Support varieties for restricted Lie algebras,*Invent. Math.***86**(1986), 553-562. MR**88f:17018****[FP2]**E. M. Friedlander and B. J. Parshall, Geometry of -unipotent Lie algebras,*J. Algebra***109**(1987), 25-45. MR**89a:17017****[FS]**E. M. Friedlander and A. A. Suslin, Cohomology of finite group schemes over a field,*Invent. Math.***127**(1997), no. 2, 209-270. MR**98h:14055a****[Hum]**J. E. Humphreys,*Conjugacy Classes in Semisimple Algebraic Groups*, American Mathematical Society (Mathematical Surveys and Monographs), 1995. MR**97i:20057****[Jan]**J. C. Jantzen,*Representations of algebraic groups,*Academic Press, 1987. MR**89c:20001****[NPV]**D. K. Nakano, B. J. Parshall and D. C. Vella, Support varieties for algebraic groups,*J. Reine Angew. Math.***547**(2002), 15-49. MR**2003b:20063****[Qu]**D. G. Quillen, The spectrum of an equivariant cohomology ring I, II,*Ann. of Math.***94**(1971), 549-572, 573-602. MR**45:7743****[SFB1]**A. A. Suslin, E. M. Friedlander and C. P. Bendel, Infinitesimal one-parameter subgroups and cohomology,*Jour. AMS.***10**(1997), 693-728. MR**98h:14055b****[SFB2]**A. A. Suslin, E. M. Friedlander and C. P. Bendel, Support varieties for infinitesimal group schemes,*Jour. AMS.***10**(1997), 729-759. MR**98h:14055c**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
20G10,
20G05

Retrieve articles in all journals with MSC (2000): 20G10, 20G05

Additional Information

**David J. Benson**

Affiliation:
Department of Mathematics, University of Georgia, Athens, Georgia 30602

Email:
djb@byrd.math.uga.edu

**Daniel K. Nakano**

Affiliation:
Department of Mathematics, University of Georgia, Athens, Georgia 30602

Email:
nakano@math.uga.edu

DOI:
https://doi.org/10.1090/S0002-9939-03-06939-9

Received by editor(s):
February 20, 2002

Received by editor(s) in revised form:
June 20, 2002

Published electronically:
March 25, 2003

Additional Notes:
The research of the first author was partially supported by NSF grant DMS-9988110

The research of the second author was partially supported by NSF grant DMS-0102225

Communicated by:
Stephen D. Smith

Article copyright:
© Copyright 2003
American Mathematical Society